Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54500.3-2011; Страница 32

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54500.1-2011 Неопределенность измерения. Часть 1. Введение в руководства по неопределенности измерения ГОСТ Р 54500.1-2011 Неопределенность измерения. Часть 1. Введение в руководства по неопределенности измерения Uncertainty of measurement. Part 1. Introduction to guides on uncertainty in measurement (Настоящий документ подготовлен Объединенным комитетом по руководствам в метрологии (JCGM) с целью продвижения идей оценивания неопределенности измерения, изложенных в «Руководстве по выражению неопределенности измерения» (GUM), и в качестве вводного руководства по применению дополнений к GUM (далее при ссылках – JCGM 100), включая JCGM 101, а также другим документам, разрабатываемым JCGM) ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte Carlo method (В настоящем стандарте установлен численный метод, согласующийся с основными принципами GUM [Руководство ИСО/МЭК 98-3 (G.1.5)] и предназначенный для получения оценки неопределенности измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную величину, в которых входные величины характеризуются любыми заданными функциями распределения вероятностей [Руководство ИСО/МЭК 98-3]) ГОСТ Р 54504-2011 Безопасность функциональная. Политика, программа обеспечения безопасности. Доказательство безопасности объектов железнодорожного транспорта ГОСТ Р 54504-2011 Безопасность функциональная. Политика, программа обеспечения безопасности. Доказательство безопасности объектов железнодорожного транспорта Functional safety. Policy and programme of safety provision. Safety proof of the railway objects (Настоящий стандарт определяет назначение документов «Политика обеспечения безопасности», «Программа обеспечения безопасности» и «Доказательство безопасности», устанавливает основные требования к структуре и содержанию этих документов, а также порядок их разработки. Настоящий стандарт распространяется на системы и устройства управления и (или) обеспечения безопасности перевозочного процесса и (или) других технологических процессов на железнодорожном транспорте)
Страница 32
32
      1. Обозначим через q и r средние арифметические значения, являющиеся оценками математи­ческих ожиданий соответственно цч и щ двух случайных величин q и r и полученные из n независимых пар одновременных наблюдений q и r в одинаковых условиях измерений (см. В.2.15). Тогда ковариацию

(см. С.3.4) q и r можно получить по формуле

S(q'Г"> = ППЩ^k - q)(О, - Г).        (17)

где qk и rk—отдельные наблюдения величин q и rсоответственно, а q и r рассчитывают из наблюдений по формуле (3). Если в действительности величины q и r некоррелированны, то оценка, полученная по формуле (17), будет, как правило, близка к нулю.

Таким образом, оценку ковариации двух коррелированных входных величин Xj и Xj с оценками Xi и Xj, полученными из независимых пар повторных одновременных наблюдений, рассчитывают по форму­ле u(Xi, Xj) = s(Xi, Xj), где s(Xj, Xj) получают по формуле (17). Оценка ковариации, полученная в соответствии с формулой (17), будет оценкой по типу А. Выборочный коэффициент корреляции для Xj и Xj может быть получен из формулы (14): r(Xj, Xj) = r(Xj, Xj) = s(Xj, Xj)/[s(Xj)s(Xj)].

П р и м е ч а н и е Примеры, в которых необходимо использовать значения ковариаций, рассчитанных по формуле (17), приведены в Н.2 и Н.4.

      1. Значительная корреляция между двумя входными величинами может наблюдаться в случаях, когда для их оценивания используют один и тот же измерительный прибор, один и тот же эталон или одни и те же справочные данные, имеющие большую стандартную неопределенность. Например, если исполь­зовать один и тот же термометр для внесения температурной поправки в оценку входной величины Xj и аналогичной поправки в оценку входной величины Xj, то после внесения поправок эти входные величины могут стать сильно коррелированными. Однако в описанном примере корреляции входных величин можно избежать, если в функциональную зависимость (1) включить Xj и Xj без поправок, но дополнить ее функ­циональными зависимостями (с известными параметрами и известными стандартными неопределенностя­ми этих параметров) указанных величин от температуры (калибровочными характеристиками) см. F.1.2.3 и F.1.2.4.
      2. Если между входными величинами имеется корреляция, и она значительна, то пренебрегать ею нельзя. Соответствующие ковариации при возможности варьирования значений входных величин (см. С.3.6, примечание 3) следует оценивать экспериментально или использовать всю доступную информацию о ха­рактере зависимости входных величин при их вариациях для оценивания типа В. При оценивании степени корреляции между входными величинами важную роль играет физическая интуиция, основанная на накоп­ленном опыте и общих знаниях (см. 4.3.1 и 4.3.2), особенно в случаях, когда корреляция обусловлена влиянием общих факторов, таких как температура окружающей среды, атмосферное давление и влаж­ность. Зачастую влияние таких факторов на взаимозависимость входных величин незначительно, и эти величины можно считать некоррелированными. Если же влиянием общих факторов пренебречь нельзя, то коррелированность входных переменных можно устранить, введя эти факторы в явном виде в функцио­нальную зависимость (1) в качестве дополнительных независимых входных величин, как это описано в 5.2.4.
  1. Определение расширенной неопределенности
    1. Введение
      1. Разработанная Рабочей группой по неопределенности Рекомендация INC-1 (1980), на которой основано настоящее Руководство (см. Введение), а также разработанные МКМВ Рекомендации 1 (CI- 1981) и 1 (CI-1986), которыми INC-1 (1980) была одобрена и вновь подтверждена (см. А.2 и А.3), поддержи­вают использование суммарной стандартной неопределенности uc(y) в качестве количественной характе­ристики неопределенности результата измерения. Во второй из вышеуказанных рекомендаций МКМВ со­держится предложение, чтобы то, что сейчас называют суммарной стандартной неопределенностью uc(y), «использовалось всеми участниками при представлении результатов всех международных сличений и других работ, проводимых под эгидой МКМВ и консультативных комитетов».

Хотя параметр uc(y) может служить универсальным средством выражения неопределенности результата измерения, зачастую в промышленности, торговле и законодательно регулируемых областях, например, связанных с охраной здоровья и обеспечением безопасности, результат измерений должен быть представлен с указанием охватывающего его интервала, в пределах которого, как можно ожидать, будет находиться большая часть распределения значений, которые обоснованно могут быть приписаны измеряемой величине. Важность такого требования была признана Рабочей группой, что привело к появ