11
- дается указанием неопределенности (В.2.18) этой оценки.
- На практике определение (дефиниция) измеряемой величины зависит от требований к точности измерения (В.2.14). Измеряемую величину следует определять с достаточной полнотой (с учетом необходимой точности измерений), чтобы для всех практических целей, связанных с измерением, значение измеряемой величины было единственным. Именно в таком смысле выражение «значение измеряемой величины» используется в настоящем Руководстве.
Пример — Если длину стального стержня номинальной длины 1 м нужно узнать с точностью до микрона, то определение измеряемой величины должно включать температуру и давление, при которых длина стержня должна быть измерена. Таким образом, определение измеряемой величины должно иметь вид, например: длина стержня при температуре 25,00 С и давлении 101 325 Па (с указанием, возможно, других необходимых параметров, например способа опирания стержня при измерении). Однако если длина стержня должна быть получена с точностью до миллиметра, то определение измеряемой величины не требует указания температуры, давления и иных аналогичных факторов.
П р и м е ч а н и е — Недостаточно полное определение измеряемой величины может привести к росту составляющей неопределенности, которая в этом случае должна быть включена в оценку неопределенности результата измерения (см. D.1.1, D.3.4 и D.6.2).
- Во многих случаях результат измерения получают на основе ряда наблюдений, выполненных в условиях повторяемости (В.2.15, примечание 1).
- Предполагается, что причиной изменчивости результатов повторных наблюдений являются влияющие величины (В.2.10), от которых может зависеть результат измерений и которые невозможно поддерживать в точности постоянными.
- Очень важно правильно составить математическую модель, с помощью которой совокупность повторных наблюдений преобразуется в результат измерения, поскольку помимо наблюдений в нее обычно необходимо включать различные влияющие величины, точные значения которых неизвестны. Эта неизвестность вносит вклад в неопределенность результата измерений наряду с изменчивостью результатов повторных наблюдений и с неточностью самой математической модели.
- В настоящем Руководстве измеряемая величина рассматривается как скаляр, т.е. ее значение выражается единственным числом. Распространение на случай связанных между собой величин, определяемых одновременно в одном измерении, требует перейти от рассмотрения измеряемой скалярной величины и ее дисперсии (С.2.11, С.2.20, С.3.2) к измеряемой векторной величине и ковариационной матрице (С.3.5). В настоящем Руководстве измерение векторной величины рассматривается только в примерах (см. H.2, H.3 и H.4).
- Погрешности, случайные и систематические эффекты, поправки
- Погрешность (В.2.19) результата измерения обусловлена несовершенством измерительной процедуры. Традиционно погрешность рассматривают как сумму двух составляющих: случайной (В.2.20) и систематической (В.2.21).
П р и м е ч а н и е — Погрешность является идеализированным понятием, поскольку на практике ее точное значение неизвестно.
- Предполагается, что случайная погрешность возникает из непредсказуемых временных или пространственных изменений влияющих величин. Следствием таких изменений, называемых далее случайными эффектами, являются изменения измеряемой величины при повторных наблюдениях. Хотя случайную погрешность результата измерения нельзя компенсировать введением поправки, ее можно уменьшить, увеличив число наблюдений. Математическое ожидание (ожидаемое значение) (С.2.9, С.3.1) случайной погрешности равно нулю.
П р и м е ч а н и е 1 — Выборочное стандартное отклонение среднего арифметического значения ряда наблюдений (см. 4.2.3) не является случайной погрешностью среднего значения, хотя такое толкование встречается в некоторых публикациях. На самом деле эта величина является мерой неопределенности среднего значения, обусловленной случайными эффектами. Точное значение погрешности среднего значения, обусловленной этими эффектами, не может быть известно.
П р и м е ч а н и е 2 — В настоящем Руководстве уделяется большое внимание различию терминов «погрешность» и «неопределенность». Эти слова не являются синонимами, отражают разные понятия, и их не следует путать друг с другом или использовать в неправильном значении.
Систематическую погрешность, так же как и случайную, нельзя устранить полностью, но зачастую можно уменьшить. Если систематическая погрешность возникает в результате известного действия влияющей величины на результат измерения (далее — систематического эффекта), то это влияние можно количественно оценить и, если оно существенно по сравнению с требуемой точностью измерения, внести