Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54500.3-2011; Страница 14

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54500.1-2011 Неопределенность измерения. Часть 1. Введение в руководства по неопределенности измерения ГОСТ Р 54500.1-2011 Неопределенность измерения. Часть 1. Введение в руководства по неопределенности измерения Uncertainty of measurement. Part 1. Introduction to guides on uncertainty in measurement (Настоящий документ подготовлен Объединенным комитетом по руководствам в метрологии (JCGM) с целью продвижения идей оценивания неопределенности измерения, изложенных в «Руководстве по выражению неопределенности измерения» (GUM), и в качестве вводного руководства по применению дополнений к GUM (далее при ссылках – JCGM 100), включая JCGM 101, а также другим документам, разрабатываемым JCGM) ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte Carlo method (В настоящем стандарте установлен численный метод, согласующийся с основными принципами GUM [Руководство ИСО/МЭК 98-3 (G.1.5)] и предназначенный для получения оценки неопределенности измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную величину, в которых входные величины характеризуются любыми заданными функциями распределения вероятностей [Руководство ИСО/МЭК 98-3]) ГОСТ Р 54504-2011 Безопасность функциональная. Политика, программа обеспечения безопасности. Доказательство безопасности объектов железнодорожного транспорта ГОСТ Р 54504-2011 Безопасность функциональная. Политика, программа обеспечения безопасности. Доказательство безопасности объектов железнодорожного транспорта Functional safety. Policy and programme of safety provision. Safety proof of the railway objects (Настоящий стандарт определяет назначение документов «Политика обеспечения безопасности», «Программа обеспечения безопасности» и «Доказательство безопасности», устанавливает основные требования к структуре и содержанию этих документов, а также порядок их разработки. Настоящий стандарт распространяется на системы и устройства управления и (или) обеспечения безопасности перевозочного процесса и (или) других технологических процессов на железнодорожном транспорте)
Страница 14
14
      1. и закон трансформирования неопределенностей. Это объясняет используемое в данном Руководстве допущение, что измерение можно моделировать математически с точностью, достаточной для обеспече­ния требуемой точности измерения.
      2. Поскольку математическая модель может быть неполной, для оценивания неопределенности на основе данных наблюдений следует обеспечить диапазоны вариативности влияющих величин, соответ­ствующие тем, что имеют место в практических условиях измерений. Для получения достоверных оценок неопределенности рекомендуется, по возможности, использовать эмпирические математические модели, основанные на долговременных измерениях количественных величин, а также эталоны сравнения и конт­рольные карты, позволяющие судить, находится ли измерение под статистическим контролем. Если дан­ные наблюдений, включая результаты статистически независимых измерений одной и той же измеряемой величины, свидетельствуют о неполноте модели, то модель должна быть пересмотрена. Использование хорошо спланированных экспериментов позволяет существенно повысить достоверность оценок неопре­деленности, поэтому планирование эксперимента следует рассматривать как важную часть в технике про­ведения измерений.
      3. Чтобы оценить правильность работы измерительной системы, часто сравнивают выборочное стандартное отклонение полученных с ее помощью результатов измерений с оценкой стандартного откло­нения, полученной суммированием составляющих неопределенности от разных источников. В этом слу­чае необходимо учитывать составляющие неопределенности (независимо от того, как получена их оценка по типу А или В) только от тех источников, которые обусловливают вариативность измеряемой величины в ходе эксперимента.

П р и м е ч а н и е Для этих целей все источники неопределенности разбивают на две группы: те, которые обусловливают вариативность измеряемой величины в ходе эксперимента, и те, которые в ходе данного экспери­мента на изменения значений измеряемой величины влияния не оказывают.

      1. Если неопределенность поправки на систематический эффект незначительна по сравнению с суммарной стандартной неопределенностью результата измерения, то ее при оценивании неопределенно­сти результата измерения можно не учитывать. Если сама поправка на систематический эффект незначи­тельна по сравнению с суммарной стандартной неопределенностью результата измерения, то допускается не вносить эту поправку в результат измерения.
      2. На практике, особенно в области законодательной метрологии, измерительный прибор часто поверяют сравнением с эталоном, и при этом неопределенности, связанные с эталоном и процедурой сравнения, пренебрежимо малы по сравнению с требуемой точностью поверки. Примером может служить использование эталонов массы при поверке весов. Если составляющими неопределенности вследствие их малости допустимо пренебречь, то разность между показанием прибора и эталоном можно рассматри­вать как погрешность поверяемого прибора (см. также F.2.4.2).
      3. Иногда результат измерения выражают в единицах эталона, а не в соответствующих единицах Международной системы единиц физических величин (СИ). Т.е., по сути, результат измерения выражают в виде отношения к принятому значению эталона. При этом неопределенность, приписанная результату измерения, может быть существенно меньше неопределенности, которая имела бы место при выражении результата измерения в единицах СИ.

Пример Прецизионный источник напряжения на диоде Зенера калибруют методом сравнения с эталоном постоянного напряжения на основе эффекта Джозефсона. Для расчета напряжения, создава­емого эталоном, используют значение постоянной Джозефсона, рекомендованное для международного применения МКМВ. Относительная суммарная стандартная неопределенность uc (Vs)/Vs (см. 5.1.6) калиб­ровки источника на диоде Зенера будет равна 2-10-8, если напряжение источника Vs выражено в относи­тельных единицах через напряжение, создаваемое эталоном, и 4-10-7, если оно выражено в единицах СИ (т.е. в вольтах). Разница в оценках обусловлена дополнительной неопределенностью, связанной с выра­жением постоянной Джозефсона в единицах СИ.

      1. Ошибки при регистрации или анализе данных могут вносить значительную неизвестную по­грешность в результат измерения. Если ошибка велика, то ее можно выявить проверкой данных, но не­большие ошибки могут быть замаскированы случайными изменениями измеряемой величины или даже быть приняты за случайные изменения. Такие ошибки не имеют отношения к неопределенности измерения.

Хотя настоящее Руководство устанавливает общую методологию оценивания неопределенно­сти, его применение требует от пользователя критического мышления, интеллектуальной честности и ком­петентности. Оценивание неопределенности нельзя рассматривать как типовую задачу, требующую при­менения стандартных математических процедур. От пользователя требуется детальное знание природы