14
- и закон трансформирования неопределенностей. Это объясняет используемое в данном Руководстве допущение, что измерение можно моделировать математически с точностью, достаточной для обеспечения требуемой точности измерения.
- Поскольку математическая модель может быть неполной, для оценивания неопределенности на основе данных наблюдений следует обеспечить диапазоны вариативности влияющих величин, соответствующие тем, что имеют место в практических условиях измерений. Для получения достоверных оценок неопределенности рекомендуется, по возможности, использовать эмпирические математические модели, основанные на долговременных измерениях количественных величин, а также эталоны сравнения и контрольные карты, позволяющие судить, находится ли измерение под статистическим контролем. Если данные наблюдений, включая результаты статистически независимых измерений одной и той же измеряемой величины, свидетельствуют о неполноте модели, то модель должна быть пересмотрена. Использование хорошо спланированных экспериментов позволяет существенно повысить достоверность оценок неопределенности, поэтому планирование эксперимента следует рассматривать как важную часть в технике проведения измерений.
- Чтобы оценить правильность работы измерительной системы, часто сравнивают выборочное стандартное отклонение полученных с ее помощью результатов измерений с оценкой стандартного отклонения, полученной суммированием составляющих неопределенности от разных источников. В этом случае необходимо учитывать составляющие неопределенности (независимо от того, как получена их оценка — по типу А или В) только от тех источников, которые обусловливают вариативность измеряемой величины в ходе эксперимента.
П р и м е ч а н и е — Для этих целей все источники неопределенности разбивают на две группы: те, которые обусловливают вариативность измеряемой величины в ходе эксперимента, и те, которые в ходе данного эксперимента на изменения значений измеряемой величины влияния не оказывают.
- Если неопределенность поправки на систематический эффект незначительна по сравнению с суммарной стандартной неопределенностью результата измерения, то ее при оценивании неопределенности результата измерения можно не учитывать. Если сама поправка на систематический эффект незначительна по сравнению с суммарной стандартной неопределенностью результата измерения, то допускается не вносить эту поправку в результат измерения.
- На практике, особенно в области законодательной метрологии, измерительный прибор часто поверяют сравнением с эталоном, и при этом неопределенности, связанные с эталоном и процедурой сравнения, пренебрежимо малы по сравнению с требуемой точностью поверки. Примером может служить использование эталонов массы при поверке весов. Если составляющими неопределенности вследствие их малости допустимо пренебречь, то разность между показанием прибора и эталоном можно рассматривать как погрешность поверяемого прибора (см. также F.2.4.2).
- Иногда результат измерения выражают в единицах эталона, а не в соответствующих единицах Международной системы единиц физических величин (СИ). Т.е., по сути, результат измерения выражают в виде отношения к принятому значению эталона. При этом неопределенность, приписанная результату измерения, может быть существенно меньше неопределенности, которая имела бы место при выражении результата измерения в единицах СИ.
Пример — Прецизионный источник напряжения на диоде Зенера калибруют методом сравнения с эталоном постоянного напряжения на основе эффекта Джозефсона. Для расчета напряжения, создаваемого эталоном, используют значение постоянной Джозефсона, рекомендованное для международного применения МКМВ. Относительная суммарная стандартная неопределенность uc (Vs)/Vs (см. 5.1.6) калибровки источника на диоде Зенера будет равна 2-10-8, если напряжение источника Vs выражено в относительных единицах через напряжение, создаваемое эталоном, и 4-10-7, если оно выражено в единицах СИ (т.е. в вольтах). Разница в оценках обусловлена дополнительной неопределенностью, связанной с выражением постоянной Джозефсона в единицах СИ.
- Ошибки при регистрации или анализе данных могут вносить значительную неизвестную погрешность в результат измерения. Если ошибка велика, то ее можно выявить проверкой данных, но небольшие ошибки могут быть замаскированы случайными изменениями измеряемой величины или даже быть приняты за случайные изменения. Такие ошибки не имеют отношения к неопределенности измерения.
Хотя настоящее Руководство устанавливает общую методологию оценивания неопределенности, его применение требует от пользователя критического мышления, интеллектуальной честности и компетентности. Оценивание неопределенности нельзя рассматривать как типовую задачу, требующую применения стандартных математических процедур. От пользователя требуется детальное знание природы