ГОСТ Р 70413—2022
А.4 Суммарная средняя стандартная неопределенность по нескольким идентичным измерительным
системам, учитывающая различие в средних значениях при внутреннем контроле качества
Лаборатории с большими рабочими загрузками могут использовать несколько экземпляров одной и той же
измерительной системы для одной и той же измеряемой величины для того, чтобы клинический образец можно
было проанализировать с помощью любой конкретной измерительной системы. В таких ситуациях полезно оце
нить единственное значение и(у), которое может быть обоснованно применено к результатам, полученным посред
ством любой из нескольких измерительных систем.
Несколько измерительных систем обычно контролируются одной и той же партией ЮС одновременно.
Значение uRw вычисляют отдельно для каждой измерительной системы. Существует возможность получения раз
ных средних значений IQC с помощью любой из измерительных систем для одной и той же партии ЮС. Следова
тельно, стандартная неопределенность средних значений для партии ЮС по нескольким измерительным систе
мам должна быть вычислена и включена в вычисление суммарной средней неопределенности.
Пример
—
IQC уровень 1партии 50 одновременно используют в трех идентичных измерительных
системах А, В, С. Предполагается, что смещение измерений для клинических образцов между тремя
системами является незначимым с медицинской точки зрения, будучи отслеживаемым путем регуляр
ных проверок с использованием панели типичных клинических образцов, a IQC и клинические образцы
имеют одинаковую непрецизионность в нескольких измерительных системах.
Шаг 1. Для данных ЮС, полученных в условиях долговременной прецизионности, вычисляют для каждой
измерительной системы средние значения х(А), х(В), х(С) и uRw(A), uRw(В), uRw(С) из значений ЮС при использо
вании каждой из трех систем. Для каждой измерительной системы (А, В, С) следует записать в таблицу среднее
значение ЮС х, число собранных данных п и значения SD uRw, как показано в таблице А.4.
Т аб лица А.4 — Пример матрицы для табулирования данных внутреннего контроля качества среди нескольких
идентичных измерительных систем
Измерительная системаА
ВС
п
ПА
ПВПС
X
*В*С
SD
u
R
w
№
иЯи/В)uRw(C)
Шаг 2. Из SD, основанных на данных, полученных для ЮС партии 50 для каждой измерительной системы (А,
В, С), вычисляют дисперсию [u2Rw (А), U^Rw(S). 42R
w
(С)] для каждой системы (А, В, С).
Шаг 3. Вычисляют дисперсии и2{А, В, С) из трех средних значений для трех измерительных систем (А, В, С)
для ЮС партии 50.
Шаг 4. Суммируют дисперсии трех средних значений и2(А, В, С) с объединенной средней дисперсией непре-
цизионности
u
2R
w
(А, В, С),
где объединенная средняя суммарная дисперсия = и2(А, В, С) + u2Rw(А, В, С) и
и (объединенная) = [и2(А, В, С) + u2Rw(А, В, С)]
и (объединенная) объединяется с соответствующим значением ucajдля вычисления суммарной и(у).
Рабочий пример
—
Объединенная средняя стандартная неопределенность по нескольким иден
тичным измерительным системам, учитывающая различные средние значения внутреннего контро
ля качества.
Шаги 1 и 2. Данные матрицы и вычисленные дисперсии представлены в таблице А.5.
Т аб лица А.5 — Рабочий пример. Таблица данных и вычисленные дисперсии (шаги 1 и 2) — объединенная
усредненная стандартная неопределенность по нескольким измерительным системам, учитывающая различия в
средних ЮС
QC уровень 1, партия 50
Измерительная система:А
ВС
п280
190400
х, ммоль/л5,15
4,935,28
SD0,160
0,1900,200
и2
и Rw
0,0256
0,03610,0400
34