Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54500.3.1-2011; Страница 76

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement (Настоящее Руководство устанавливает общие правила оценивания и выражения неопределенности измерения, которые следует соблюдать при измерениях разной точности и в разных областях - от технических измерений на производстве до фундаментальных научных исследований) ГОСТ Р 54504-2011 Безопасность функциональная. Политика, программа обеспечения безопасности. Доказательство безопасности объектов железнодорожного транспорта ГОСТ Р 54504-2011 Безопасность функциональная. Политика, программа обеспечения безопасности. Доказательство безопасности объектов железнодорожного транспорта Functional safety. Policy and programme of safety provision. Safety proof of the railway objects (Настоящий стандарт определяет назначение документов «Политика обеспечения безопасности», «Программа обеспечения безопасности» и «Доказательство безопасности», устанавливает основные требования к структуре и содержанию этих документов, а также порядок их разработки. Настоящий стандарт распространяется на системы и устройства управления и (или) обеспечения безопасности перевозочного процесса и (или) других технологических процессов на железнодорожном транспорте) ГОСТ Р 54505-2011 Безопасность функциональная. Управление рисками на железнодорожном транспорте ГОСТ Р 54505-2011 Безопасность функциональная. Управление рисками на железнодорожном транспорте Functional safety. Risk management on railway transport (Настоящий стандарт устанавливает подход и общие правила управления рисками на железнодорожном транспорте, связанными с функциональной безопасностью объектов инфраструктуры и подвижного состава. Настоящий стандарт распространяется на внутренние и внешние по отношению к субъектам деятельности в сфере железнодорожного транспорта (владельцам инфраструктуры, операторам железнодорожного подвижного состава, перевозчикам и пользователям услуг железнодорожного транспорта) риски. Настоящий стандарт предназначен для применения субъектами деятельности в сфере железнодорожного транспорта общего и необщего пользования)
Страница 76
76

П р и м е ч а н и е Приведенный выше анализ демонстрирует аналитический вывод, применимый к некоторым задачам подобного типа. В данном частном случае результаты могли бы быть получены быстрее, если принять во внимание факт, что д§у(п) строго убывающая функция, а наименьший интервал охвата всегда включает в себя моду распределения.

F.3 Применение способа оценивания неопределенности по GUM к задаче определения коэффициента рассогласования

F.3.1 Некоррелированные входные величины

F.3.1.1 В задаче определения коэффициента рассогласования, рассмотренной в 9.4, в качестве модели измерения использована следующая:

8X = f (X) = f (X,, X2) = X2 + X2,

где величинам X1 и X2 приписаны нормальные распределения с математическими ожиданиями x1 и х2 диспер­сиями u2(x-]) и u2(x2) соответственно.

F.3.1.2 Применение GUM [Руководство ИСО/МЭК 98-3 (5.1.1)] дает

8у = x2 + x 2

в качестве оценки 8Y. Частные производные от функции измерения по X' для i = 1, 2 имеют вид

F.3.1.3 Следовательно, в соответствии с GUM [Руководство ИСО/МЭК 98-3 (5.1.2)] для стандартной неопре­деленности u(8y) справедливо выражение:

В результате формула (F.5) принимает вид

и2 (8у) = 4х 2 и2 (x1) + 4x fu2 (x2) + 4 и2 (x1) u 2(x2).        (F.6)

F.3.1.4 Поскольку 8Y подчиняется нормальному распределению, 95 %-ный интервал охвата для 8Y имеет

вид

8y ± 2u(8y).

F.3.2 Коррелированные входные величины

F.3.2.1 Если входные величины коррелированны, то матрица неопределенностей для наилучших оценок входных величин определена формулой (27).

F.3.2.2 Применяя GUM [Руководство ИСО/МЭК 98-3 (5.2.2)], можно получить:

= 4x2u2 (x,) + 4x|u2(x2) + 8r(x,, x2)x,x2u(x,)u(x2).