ГОСТ ISO/TS 28038—2021
Библиография
[1]
http://srdata.nist.gov/its90/download/allcoeff.tab
[2]Barker,R.M.,Сох,М.G.,Forbes, А.В.andHarris,Р.М.SSfMBestPracticeGuide
No. 4. Discrete modelling and experimental data analysis. Tech, rep., National Physical Laboratory, Teddington,
UK, 2007
[3] Bouchard, H., Lacroix, F., Beaudoin, G., Carrier, J.-F. and Kawrakow, I. On the characterization and uncertainty
analysis of radiochromic film dosimetry. Med. Phys. 36, 6 (2009), 1931-1946
[4] Burnham, K. P., and Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic
Approach 2nd edn. New York: Springer, 2002
[5]Clenshaw, C. W. A note on the summation of Chebyshev series. Math. Tab. Wash. 9 (1955), 118-120
[6]Clenshaw, C. W. Mathematical Tables Volume 5. Chebyshev Series for Mathematical Functions. Her Majesty’s
Stationery Office, 1962
[7]Clenshaw, C. W., and Hayes, J. G. Curve and surface fitting. J. Inst. Math. Appl. 1 (1965), 164-183
[8]Comtet,L. Bonferroni Inequaiities-Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel,
Dordrecht, Netherlands, 1974
[9] Cox, M., and Harris, P. Polynomial calibration functions revisited: numerical and statistical issues. F. Pavese, A.
Forbes, A. Chunovkina, W. Bremser, and N. Fischer, Eds., vol. Advanced Mathematical and Computational Tools
in Metrology X of Series on Advances in Mathematics for Applied Sciences, World Scientific, pp. 9-16
[10]Cox, M.G. A bracketing technique for computing a zero of a function. Comput. J. 13 (1970), 101-102
[11]Cox, M.G., Forbes, A. B., Harris, P. M., and Smith, I. M. The classification and solution of regression problems for
calibration. Tech. Rep. CMSC 24/03, National Physical Laboratory, Teddington, UK, 2003
[12]Cox, M. G., and Harris, P. M. SSfM Best Practice Guide No. 6, Uncertainty evaluation. Tech. Rep. MS 6, National
Physical Laboratory, Teddington, UK, 2010
[13] Crovini, L., Jung, H. J., Kemp, R. C., Ling, S. K., Mangum, B. W., and Sakurai, H. The platinum resistance
thermometer range of the international temperature scale of 1990. Metrologia 28, 4 (1991), 317
[14] Dekker, T.J. Finding azero by means of successive linear interpolation. In ConstructiveAspects of the Fundamental
Theorem of Algebra (London, 1969), B. Dejon and P. Henrici, Eds., Wiley Interscience
[15] Engvall, E., and Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin
g. Immunochemistry 8, 9 (Sep 1971), 871-874
[16]Forsythe, G. E. Generation and use of orthogonal polynomials for data-fitting with a digital computer. J. Soc.
Indust. Appl. Math. 5 (1957), 74-88
[17]Gill, P. E., Murray, W., and Wright, M. H. Practical Optimization. Academic Press, London, 1981
[18]Golub, G. H., and Van Loan, C. F. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, USA,
1996. Third edition
[19]Higham, N. J. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 1996
[20]ISO 11095:1996, Linear calibration using reference materials
[21] ISO 11843-2, Capability of detection — Part 2: Methodology in the linear calibration case (Способность
обнаружения. Часть 2. Методология в случае линейной калибровки)
[22]ISO 11843-5, Capability of detection — Part 5: Methodology in the linear and non-linear calibration cases
[23] ISO 6143:2006, Gas analysis — Comparison methods for determining and checking the composition of calibration
gas mixtures (Газовый анализ. Методы сравнения для определения и проверки состава калибровочных
газовых смесей)*
[24] ISO 7066-2:1988, Assessment of uncertainty in the calibration and use of flow measurement devices — Part 2:
Non-linear calibration relationships
[25]ISO/TS 28037:2010, Determination and use of straight-line calibration functions
[26] ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in
measurement (GUM:1995) Supplement 1:2008 — Propagation of distributions using a Monte Carlo method
(Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения
(GUM:1995) Дополнение 1: 2008 — Трансформирование распределений с использованием метода Монте-
Карло)*
[27] ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in
measurement (GUM:1995) Supplement 2:2011 — Extension to any number of output quantities
(Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения
(GUM:1995) Дополнение 2:2011 — Обобщение на случай произвольного числа выходных величин)*
* Официальный перевод этого стандарта находится в Федеральном информационном фонде стандартов.
40