Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 59995-2022; Страница 161

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ 24834-81 Основные нормы взаимозаменяемости. Резьба метрическая. Переходные посадки Basic norms of interchangeability. Metric screw thread. Transition fits (Настоящий стандарт распространяется на метрическую резьбу с профилем по ГОСТ 9150 и устанавливает диаметры, шаги, допуски и предельные отклонения для переходных посадок при одновременном применении дополнительного элемента заклинивания. Устанавливаемые настоящим стандартом посадки предназначаются для наружных резьб (резьба на ввинчиваемом конце шпильки) деталей из стали, сопрягаемых с внутренними резьбами в деталях из стали, чугуна, алюминиевых и магниевых сплавов. Допускается применение посадок по настоящему стандарту для других материалов сопрягаемых деталей. В этом случае требуется проверка посадки. Настоящий стандарт не распространяется на резьбовые соединения для рабочих температур свыше 200 град. С и на соединения деталей из нержавеющих кислотоустойчивых хромоникелевых сталей) ГОСТ Р 70120-2022 Авиационная техника гражданского назначения. Эксплуатация по техническому состоянию. Общие требования Civil aviation equipment. Operation according to technical condition. General requirements (Настоящий стандарт распространяется на гражданскую авиационную технику и устанавливает общие требования и порядок применения стратегии эксплуатации по техническому состоянию в гражданской авиации. На основе настоящего стандарта допускается при необходимости разрабатывать нормативные документы, учитывающие особенности конкретных видов авиационной техники в зависимости от их технического уровня и эксплуатационной специфики) ГОСТ Р ИСО 16128-2-2022 Продукция парфюмерно-косметическая натуральная. Руководство по идентификации и критерии. Часть 2. Критерии для ингредиентов и продукции Organic cosmetic products. Guidelines on technical definitions and criteria. Part 2. Criteria for ingredients and products (Настоящий стандарт устанавливает критерии расчета индексов натурального, натурального происхождения, органического и органического происхождения, применимых к категориям ингредиентов по ИСO 16128-1. В стандарте также изложены основы для определения содержания продуктов натурального, натурального происхождения, органического и органического происхождения на основе характеристик ингредиентов. В настоящем стандарте, как и в ИСO 16128-1, не приведена информация о продукции (например, свойства и маркировка), ее безопасности для человека, экологическая безопасность и социально-экономические аспекты (например, соглашение о взаимной выгоде), не указаны характеристики упаковочных материалов, а также требования к парфюмерно-косметической продукции)
Страница 161
Страница 1 Untitled document
ГОСТ Р 599952022
[82] Montrasio L., Nova R. Settlements ofshallowfoundations on sand; geometrical effects. Geotechnique. 1997, 47 (1)
pp. 49—60
[83]Andersen K.H., Lauritzsen R. Bearing capacity for foundation with cyclic loads. J. Geotech. Eng. 1988, 114 (GT5)
pp. 540—555
[84]Andersen K.H., Allard M.A., Hermstad J. Centrifuge model tests of a gravity platform on very dense sand. II: Inter
pretation, Proc. 7th Inti. Conf. on Behaviour of Off-Shore Structures, BOSS’94, MIT, Boston, 1994, 1, p. 255—282
[85]Andersen K.H. Bearing capacity under cyclic loading — Offshore, along the coast and on land, The 21st Bjerrum
Lecture, Oslo, 23 Nov. 2007. Can. Geotech. J. 2009, 46 pp. 513—535
[86]Andersen K.H. Foundation design of offshore gravity structures, Chapter 4 in Cyclic Loading of Soils. FromTheory
to Design, M.P. O’Reilly and S.F. Brown (eds.), Blackie and Son, 1991
[87]Brinch-Hansen J. A revised and extended formula for bearing capacity, The Danish Geotechnical Institute, Bulletin
No. 2, Copenhagen, 1970
[88] Davis E.H., Booker J.R. The Effect of Increasing Strength with Depth on the Bearing Capacity of Clays. Geotech
nique. 1973, 23 (4) pp. 551—563
[89] Matar M., Salengon J. Capacite portante d’une semelle filante sur sol purement coherent d’epaisseur limitee et de
cohesion variable avec la profondeur. Revue Frangaise de Geotechnique. 1977, 1pp. 3752
[90]Salengon J., Matar M. Capacite portante des fondations superficielles circulaires. Journal de Mecanique Theorique
etAppliquee. 1982, 1(2) pp. 237—267
[91]Foundations D.N.V.G.L. Classification Note No. 30.4, DNVGLA/S. Hovik, 1992, pp. 54.
[92]Prandtl, L., Eindringungsfestigkeit und Festigkeit von Schneiden, Angew. Math. U. Mech, 1(15), 1920
[93]Терцаги К. Теория механики грунтов, М., 1961
[94] Martin С.М. New Software for Rigorous Bearing Capacity Calculations, Proc. Inti. Conf. on Foundations, Dundee,
UK, 2003, p. 581—592
[95] Schofield, A. N., Interlocking, and Peak and Design Strengths, Geotechnique, 56 (5), 2006, p. 357—358; Discus
sions and response in Geotechnique, 58 (6), 2008, p. 527—532
[96] Finnie I.M.S., Morgan N. Torsional Loading of Subsea Structures, Proc. 14th Inti. Offshore and Polar Engineering
Conf., ISOPE, Toulon, France, 2004
[97]Cassidy M.J., Cheong J. The behaviour of circularfootings on sand subjected to combined vertical-torsion loading,
Inti. Journal of Physical Modelling in Geotechnics. 2005, 5 (4) pp. 114
[98]Poulos H.G., Davis E.H. Elastic Solutions for Soil and Rock Mechanics. John Wiley & Sons, 1974
[99] Doherty J.P, Deeks A.J. Elastic response of circular footings embedded in a non-homogeneous half-space. Geo
technique. 2003, 53 (8) pp. 703—714
[100] Holtz R.D. In: Stress Distribution and Settlement of Shallow Foundations, Foundation Engineering Handbook.
(Fang H.Y., ed.). KluwerAcademic Publishers Group, Second Edition, 1991
[101] Gourvenec S., Randolph M.F., Consolidation beneath skirted foundations due to sustained loading, Int. Journal of
Geomechanics, January/February, 10 (1), 2010, p. 22—29
[102] Gourvenec S., Randolph M.F. Effect of foundation embedment and soil properties on consolidation response, Proc.
Int. Conf. on Soil Mechanics and Geotechnical Engineering, ICSMGE, Alexandria, Egypt, 2009, p. 638—641
[103] Andersen K.H., Hoeg K. Deformations of soils and displacements of structures subjected to combined static and
cyclic loads, Proc. Xth European Conf. on Soil Mechanics and Foundation Engineering, ECSMFE, Firenze, 4,1991, p.
11471158
[104] API RP2A, Recommended Practicefor Planning, Designing and Constructing Fixed Offshore Platforms—Working
Stress Design, American Petroleum Institute, Washington DC екомендованная практика по планированию,
проектированию истроительству стационарных морских платформ— Расчет подопустимым напряжениям,
Американский нефтяной институт, Вашингтон, округ Колумбия)
[105] MurffJ.D. Pile capacity ina softening soil. Int. J. Numer. Anal. Methods Geomech. 1980April-June, 4 (2) pp. 185
189
[106] Randolph M.F. Design considerations for offshore piles, Proc. Inti. Conf. on Geotechnical Practice in Offshore En
gineering, Austin, Texas, ASCE, April 27—29, 1983, p. 422—439
[107] Tomlinson M.J. Pile Design and Construction Practice. E. and F.N. Spon, Fourth Edition, 1994
[108] Kraft L.M., Focht J.A., Amarasinghe S.F. Friction capacity of piles driven into clay. J. Geotech. Eng. Div. 1981 No
vember, 107 (GT11) pp. 15211541
[109] Semple R.M., Rigden W.J. Shaft capacity ofdriven pipe piles inclay, Proc. Inti. Symposium onAnalysis and Design
of Pile Foundations, San Francisco, ASCE, October 1984. P. 59—79
[110] Randolph M.F., Murphy B.S. Shaft capacity of driven piles in clay, Proc. 17th Offshore Technology Conf., Houston,
Texas, paper OTC 4883, May 1985
[111] Pelletier J.H., Murff J.D., Young A.C. Historical development and assessment of current API design methods for
axially loaded piles, Proc. 27th Offshore Technology Conf., Houston, Texas, paper OTC 7157, May 1993
155