ГОСТ Р ИСО 9241-910—2015
[
1
]
12
]
[3]
И]
[51
[
6
]
[7]
[8]
[9]
[
10
]
[
11
]
[
12
]
[13]
[14]
ISO 9241-12
ISO 9241-14
ISO 9241-15
ISO 9241-16
ISO 9241-17
ISO 9241-110
ISO 9241-210
ISO 9241-400
ISO 9241-410
ISO 9241-920:2009
ISO 11064-4
EN 894-4
Библиография
ISO 1503
ISO 9241-5
Spatial orientation and direction of movement — Ergonomic requirements
Ergonomic requirements for office work with visual display terminals (VDTs) — Part 5:
Workstation layout and postural requirements
Ergonomic requirements for office work with visual display terminals (VDTs) —
Part 12: Presentation of information
Ergonomic requirements for office work with visual display terminals (VDTs) —
Part 14: Menu dialogues
Ergonomic requirements for office work with visual display terminals (VDTs) —
Part 15: Command dialogues
Ergonomic requirements for office work with visual display terminals (VDTs) —
Part 16: Direct manipulation dialogues
Ergonomic requirements for office work with visual display terminals (VDTs) —
Part 17: Form filling dialogues
Ergonomics of human-system interaction — Part 110: Dialogue principles
Ergonomics of human-system interaction — Part 210: Human-centred design for
interactive systems
Ergonomics of human-system interaction — Part 400: Principles and requirements for
physical input devices
Ergonomics of human-system interaction — Part 410: Design criteria for physical
input devices
Ergonomics of human-system interaction — Part 920: Guidance on tactile and haptic
interactions
Ergonomic design of control centres — Part 4: Layout and dimensions of workstations
Safety of machinery — Ergonomic requirements for the design of displays and control
actuators — Part 4: Location and arrangement of displays and control actuators
[15]AKAMATSU. M.. MACKENZIE. I.S. and HASBROUQ. T. A comparison of tactile, auditory, and visual
feedback in a pointing task using a mouse-type device. Ergonomics. 38. pp. 816-827
[16]AMIRABDOLLAHIAN, F.. TOPPING. T.. DRIESSEN. B. and HARWIN. W. (2003). Upper Limb Robot
Mediated Stroke Therapy — GENTLE/s Approach. Autonomous Robots. 15(1). pp. 35-51
[17]
BACH-Y-RITA. P. (1972). Brain Mechanisms in Sensory Substitution. New York: Academic Press
[18]BACH-Y-RITA. P.. KACZMAREK. K.A. and TYLER. M.E. (2003). A tongue-based tactile display for portrayal
of environmental characteristics. In J. Hettinger and M. W. Haas (eds.), Virtual and adaptive environments:
Applications, implications, and human performance. Mahwah. NJ: Erlbaum
[19] BAILLIE. S.. CROSSAN. A.. BREWSTER, S.A., MELLOR. D. and REID. S. (2005). Validation of a Bovine
Rectal Palpation Simulator for Training Veterinary Students. Studies in Health Technology and Informatics,
pp. 33-36, IOS Press
[
20
]
BASDOGAN. C.. DE. S.. KIM. J.. MUNIYANDI, M.. KIM. H. and SRINIVASAN. M.A. (2004). Haptics in
Minimally Invasive Surgery Simulation and Training. IEEE Computer Graphics and Applications. 24(2). pp. 56-
64
[
21
]
BREWSTER. S.A. and KING. A. (2005). An Investigation into the Use of Tactons to Present Progress
Information. Proceedings of Interact 2005 (Rome. Italy), pp. 6-17
[
22
]
BURDEA. G.C. (2000). Haptic issues in virtual environments. Proceedings of computer graphics international,
pp. 295-302
[23]BURDEA. G. (1996). Force and Touch Feedback for Virtual Reality. New York: John Wiley & Sons
[24]CHOI. S. and TAN. H.Z. (2004). Toward realistic haptic rendering of surface textures. IEEE Computer
Graphics and Applications. 24(2). pp. 40-47
[25] COCKBURN. A. and BREWSTER. S.A. Multimodal feedback for the acquisition of small targets. Ergonomics.
48(9). pp. 1129-1150
[26]COLGATE. J.E. and SCHENKEL. G.G. (1997). Passivity of a class of sampled-data systems: Application to
haptic interfaces. J. of Robotic Systems. Vol. 14. No. 1. pp. 37-47
[27] CRAIG. J. and JOHNSON. K.O. (2000). The two-point threshold: not a measure of tactile spatial resolution.
Current Directions in Psychological Science. 9. pp. 29-32
[28] CROSSAN. A. and BREWSTER. S.A.. REID. S. and MELLOR. D. (2002). Multi-Session VR Medical Training
— The HOPS Simulator. Proceedings of BCS HCI 2002 (London. UK). Springer, pp. 213-226
[29] DIOLAITI. N.. NIEMEYER. G.. BARBAGLI. F. and SALISBURY. J.K. (2005). Stability of haptic rendering:
discretization, quantization, time-delay and coulomb effects. IEEE Trans. Robotics. Vol. 22. No. 2. pp. 256-
268
[30]DONALD. B.R. and HENLE, F. (2002). Using haptic vector fields for animation motion control. Proc. 2000
IEEE Int. Conf. on Robotics & Automation. April 2000. San Francisco. CA. pp. 3435-3442
[31]MIRANDA. E.R. and WANDERLEY. M.M. (2006). New Digital Musical Instruments: Control and Interaction
beyond the Keyboard. Middleton. W l: A-R Editions. ISBN 0-89579-585-X
[32]FRISOLI, A.. BERGAMASCO. M.. WU. S.L. and RUFFALDI. E. (2005). Evaluation of multipoint contact
interfaces in haptic perception of shapes. In F. Barbagli. D. Prattichizzo and K. Salisbury (eds.). Multi-point
Interaction with Real and Virtual Objects. Springer Tracts in Advanced Robotics. (Vol. 18. pp. 177-188).
BerliniHeidelberg: Springer
43