ГОСТ Р И С 016269-8—2005
Т а б л и ц а D.3 — Значение коэффициента к для определения двустороннего предикционного интервала с
уровнем доверия 97,5 % и известным стандартным отклонением совокупности
т
п
1
23
А
5
67
в91015
2
2.746
32.589
42.506
52.456
62.421
72.397
8 2.378
9 2.363
10 2.351
11 2.342
12 2.333
13 2.327
14 2.321
15 2.315
16 2.311
17 2.307
18 2.303
19 2.300
20 2.297
25 2.286
30 2.279
35 2.274
40 2.270
45 2.267
50 2.264
60 2.261
70 2.258
80 2.256
90 2.254
100 2.253
150 2.249
200 2.247
250 2.246
300 2.246
350 2.245
400 2.245
450 2.244
500 2.244
600 2.244
700 2.244
800 2.243
900 2.243
10002.243
«0
2.242
3.048 3.215 3.329 3.415
2.878 3.037 3,146 3,228
2.788 2.943 3,049 3,129
2.732 2.885 2,989 3,068
2.695 2.845 2.948 3.026
2.667 2,816 2,918 2,996
2.647 2.795 2,896 2,973
2.630 2,778 2,878 2.955
2.617 2.764 2.864 2,940
2.607 2.752 2.852 2,928
2.598 2.743 2.843 2,918
2,590 2.735 2.834 2,909
2.583 2.728 2.827 2,902
2.578 2.722 2.821 2,896
2.573 2.717 2.815 2.890
2.568 2.712 2,811 2.885
2.564 2.708 2,806 2.881
2.561 2.704 2.802 2,877
2.557 2.701 2,799 2,873
2,545 2.688 2,786 2.860
2,537 2.679 2,777 2.850
2,531 2.673 2,770 2,844
2,527 2.669 2.766 2.839
2.524 2.665 2,762 2.835
2,521 2.662 2,759 2.832
2,517 2.658 2,754 2,828
2,514 2.655 2,751 2,824
2,512 2.652 2,749 2,822
2,510 2.650 2,747 2,820
2,508 2.649 2,745 2,818
2,504 2.645 2,741 2,814
2.502 2.642 2,739 2,811
2.501 2.641 2,737 2,810
2.500 2.640 2,736 2,809
2,500 2.640 2,736 2,808
2.499 2.639 2.735 2.808
2.499 2.639 2.735 2,807
2.498 2.639 2.734 2,807
2.498 2.638 2,734 2,807
2.498 2.638 2,734 2.806
2,498 2.638 2,733 2.806
2.497 2.637 2,733 2.806
2.4972.6372.7332,806
2.4962.6362,7322.804
3.484 3.541
3,294 3.349
3.1943.247
3,1313.184
3.0893.141
3.0583.109
3.034 3.085
3,016 3.067
3.001 3.052
2.989 3.039
2.978 3.029
2.970 3.020
2.962 3.012
2.956 3.006
2,950 3.000
2.945 2.995
2,940 2.990
2.936 2.986
2.933 2.982
2,919 2.968
2.9102.959
2,9032.952
2,8982.947
2.8942.943
2.891 2.940
2.886 2.935
2.883 2.932
2,880 2.929
2,878 2.927
2.877 2.925
2.872 2.921
2.870 2.918
2.868 2.917
2.867 2.916
2,867 2.915
2,866 2.914
2,866 2.914
2.865 2.914
2.865 2.913
2.864 2.913
2.864 2.913
2.864 2.912
2.8642.912
2.8622.911
3.590 3.633 3.671 3.813
3.396 3.437 3.474 3.610
3.293 3.333 3.369 3.502
3.229 3.268 3,303 3.434
3.185 3.224 3.258 3.388
3.153 3.192 3,226 3.354
3.129 3,167 3,201 3.329
3.110 3,148 3.182 3.309
3.095 3,133 3,166 3.293
3.082 3.120 3.153 3.279
3.072 3.109 3,143 3.268
3.063 3,100 3,133 3.259
3.055 3.092 3,126 3.250
3.048 3.086 3.119 3.243
3.043 3.080 3.113 3.237
3.037 3.074 3,107 3.231
3.033 3.070 3,103 3.227
3.029 3,066 3.098 3.222
3.025 3.062 3.095 3.218
3.010 3,047 3.080 3.203
3.001 3,038 3.070 3.193
2.994 3.031 3.063 3.185
2.989 3.025 3.058 3.180
2.985 3.021 3.054 3.176
2.982 3.018 3.050 3.172
2.977 3.013 3.045 3.167
2.973 3.010 3.042 3.163
2.971 3,007 3.039 3.161
2.969 3,005 3.037 3.158
2.967 3.003 3.035 3.157
2.9622.9983.0303.151
2.9602.9963.0283.149
2.9582.9943.0263.147
2.9572.9933.0253.146
2.956 2.993 3.025 3.146
2.956 2.992 3.024 3.145
2.956 2.992 3.024 3.145
2.955 2.991 3.023 3.144
2.955 2.991 3.023 3.144
2.954 2.991 3.023 3.143
2.954 2.990 3.022 3.143
2.954 2.990 3.022 3.143
2.9542.9903.022
3.143
2.9522.9883.0203.141
72