ГОСТ Р И С 016269-8—2005
Т а б л и ц а В.З — Значение коэффициента к для определения двустороннего предикционного интервала с
уровнем доверия 97,5 % и неизвестным стандартным отклонением совокупности
п
12
34
т
5в
789
1015
2 31.172 43.457
3 7.166 9.163
4
4.670 5.726
5 3.830 4.587
6 3.417 4.034
7 3.174 3.710
8 3.014 3,498
9 2.901 3.349
10 2.817 3.238
11 2.751 3.153
12 2.699 3.085
13 2.657 3.030
14 2.622 2.984
15
2.592 2.946
16
2.567 2.913
17 2.545 2.885
18 2.526 2.860
19 2.509 2.838
20 2.494 2.819
25
2.439
2.748
30
2.403 2.702
35
2.379 2.671
40 2.361 2.647
45 2.347 2.630
50 2.336 2.616
60
2.320 2.595
70
2.308 2.580
80 2.300 2.569
90 2.293 2.561
100 2.288 2.554
150 2.272 2.535
200 2.265 2.525
250 2.260 2,519
300 2.257 2.515
350 2.255 2.512
400 2.253 2.510
450 2.252 2.509
500
2.251
2.507
600
2.249
2.506
700 2.248 2.504
800 2.248 2.503
900 2.247 2.502
1000 2.246 2.502
00
2.2422.496
50.640
55.588
10.362 11.207
6,363 6.816
5.042 5.367
4.403 4,666
4.029
4,256
3.784
3.988
3.613
3.800
3.485 3.660
3.387 3.553
3.309 3.467
3.246
3.398
3.194
3.3
4
1
3,149 3,292
3.112 3,251
3.079 3.216
3.051 3.184
3.026 3.157
3.004
3.133
2.922 3.044
2.870 2.987
2,834 2.948
2.808 2,919
2.788 2.897
2.772
2.880
2.748 2.854
2.732 2.836
2.719 2.823
2.710 2.812
2.702
2.804
2.680
2.779
2.669
2.767
2.662 2.760
2.658 2.755
2.655 2.752
2.652
2.749
2.650
2.747
2.649 2.746
2.647 2.744
2.645 2.742
2.644 2.741
2.643 2.740
2.642
2.739
2.6362.732
59.311 62.273
11.854 12.375
7.165 7.449
5.619 5.824
4.870 5.036
4.432 4.576
4.146 4.275
3.945 4.063
3.795 3.906
3,681 3.785
3.590 3.689
3.516 3.611
3.454 3.546
3.403 3.492
3.359 3.446
3.320 3.406
3,287 3.371
3,258 3.340
3.232 3.313
3.137 3,213
3.077 3.149
3.035 3.105
3.004 3.073
2.981 3.048
2.962 3.028
2.935 2.999
2.915 2.979
2.901 2.964
2.890 2.952
2.881 2.943
2.855 2.916
2.842 2.902
2.835 2.894
2.829 2.889
2.826 2.885
2.823 2.882
2.821 2.880
2.819 2.878
2.817 2.876
2.815 2.874
2.814 2.872
2.813 2.871
2.812 2.870
2.8042.862
64.718 66,793 68.590
12.808 13.179 13,503
7.687 7.891 8.069
5.996 6.144 6.274
5.176 5.297 5.403
4.697 4.801 4.893
4.383 4.477 4.560
4.163 4,249 4.324
3.999 4.079 4.150
3.873 3.949 4.016
3.773 3.845 3.909
3.692 3.761 3,822
3.624 3.691 3.750
3.568 3.633 3.690
3.519 3.582 3.638
3.477 3.539 3.593
3.441 3.501 3.555
3.409 3.468 3.520
3.380 3.439 3.490
3.276 3.331 3.379
3.210 3.262 3.308
3.164 3.214 3.258
3.130 3.179 3.222
3.104 3.153 3,195
3.084 3.131 3.173
3.054 3,100 3.141
3.033 3.078 3.118
3.017 3.062 3.101
3.005 3.049 3.089
2.995 3.039 3.078
2.966 3.010 3.048
2.952 2.995 3.033
2.944 2.987 3.024
2.938 2.981 3.018
2.934 2.977 3,014
2.931 2.974 3.010
2.929 2.971 3.008
2.927 2.969 3.006
2.925 2.966 3.003
2.923 2.964 3.001
2.921 2.963 2.999
2.920 2.962 2.998
2.919 2.961 2.997
2.9112.9522.988
70.172
7
6
.0
3
7
13.788 14.859
8.228 8.825
6.390 6.828
5.498 5.858
4.975
5.288
4.633
4.914
4.392
4.650
4.213 4.454
4.075 4.303
3.966 4.183
3.877
4.085
3.803
4.004
3.741 3.936
3.688 3.877
3.642 3.827
3.602 3.783
3.567 3.744
3.536
3.710
3.421 3.584
3.348 3.503
3.298 3.447
3.261 3.406
3.232 3.375
3.210
3.350
3.177 3.314
3.154 3.288
3.137 3.269
3.123 3.254
3.113
3.243
3.081
3.208
3.066
3.191
3.0573.181
3.0513.174
3,0463.170
3.043
3.166
3.040
3.163
3,0383.161
3.0353.158
3.0333.155
3.0323.153
3.0303.152
3.029
3.151
3.0203.141
36