37
отклонений повторяемости и воспроизводимости рассчитывают таким образом, что на них не влияет наличие выбросов. Если всех участников эксперимента можно разделить на два класса: производящих данные хорошего и плохого качества, то робастные методы дадут значения стандартных отклонений повторяемости и воспроизводимости, которые действительны для класса с хорошим качеством данных, и не окажут воздействия на данные плохого качества (при условии, что класс данных плохого качества не слишком велик).
6.1.4 Использование робастных методов для анализа данных не влияет на планирование, организацию или выполнение эксперимента по оценке прецизионности. Решение об использовании робастных методов или методов выявления и удаления выбросов должно приниматься экспертом по статистике и представляться в совет экспертов. При использовании робастных методов в ходе обработки данных необходимо, как и в других случаях, проводить тесты на наличие выбросов, проверку совместимости (однородности), как это описано в ГОСТ Р ИСО 5725-2 или ГОСТ Р ИСО 5725-5, а также исследовать причины отдельных выбросов или графики по статистикам h и k. Однако сами исходные данные не должны исключаться как результаты этих измерений и проверок.
6.1.5 Знаменатели в формулах для статистик h и k являются стандартными отклонениями, которые в соответствии с методами расчета этих статистик, описанными в ГОСТ Р ИСО 5725-2, рассчитывают на основе представленных данных. Присутствие выбросов в этих данных будет изменять знаменатели, что приведет к искажениям в графиках этих статистик. Например, если на каком-то уровне эксперимента одна лаборатория выдает, что среднее значение в элементе является необычно большим выбросом, так что его величина намного больше, чем у любых других выбросов на том же уровне, то на графике статистики h это будет выглядеть в виде непомерно большого значения h для этого уровня. Однако значение статистики h для всех других лабораторий на этом же уровне будет малым, даже если несколько других лабораторий имеют выбросы. К подобному эффекту в расчетах статистики h может привести и использование общего среднего. В то же время использование робастных оценок стандартных отклонений как знаменателей в статистиках h и k и робастных оценок общих средних в расчете статистики h позволяет избежать этого искажения. Поэтому их и рекомендуется использовать для этих целей.
6.1.6 Данные эксперимента по оценке прецизионности позволяют рассчитать статистики двух типов:
a) средние значения в элементах, по которым рассчитывают стандартное отклонение, определяющее оценку межлабораторного расхождения;
b) стандартные отклонения или расхождения в пределах элементов (в том числе расхождения в эксперименте с распределенными уровнями), которые объединяют, чтобы получить оценку внутрилабораторного расхождения (вариации).
Робастные методы, описанные здесь, не подменяют эти средние значения в элементах, стандартные отклонения или расхождения (или вариации), различия, а обеспечивают альтернативные способы их сочетания для получения статистик, используемых для расчетов стандартных отклонений повторяемости и воспроизводимости.
Например, для значений одного уровня в эксперименте по модели с однородными уровнями, рассмотренном в ГОСТ Р ИСО 5725-2, первым этапом анализа является расчет среднего и стандартного отклонений результатов измерений в каждом элементе. Средние значения в элементах затем используют для расчетов стандартного отклонения, которое является оценкой межлабораторного расхождения. Когда используют робастные методы, изложенные в этом пункте, расчет выполняют с использованием Алгоритма А и средние значения в элементах не исключают из расчетов в результате применения к ним критерия Граббса. Также по этой модели