11
Метод анализа требует, чтобы все расхождения были рассчитаны с сохранением знака разности
а - b.
Рассчитывают средние значения уij и сводят их в таблицу (см. таблицу 3).
4.5.2 Если элемент в таблице 1 не содержит двух результатов измерений (например потому, что пробы были испорчены или данные исключены в последующем как выбросы), то соответствующие элементы в таблицах 2 и 3 оставляют пустыми.
4.5.3 Для каждого уровня j эксперимента рассчитывают среднее Dj и стандартное sDj отклонения расхождений в графе j таблицы 2 по формулам:
, (8)
, (9)
где Σ - знак суммирования по всем лабораториям i = 1, 2, ..., р.
Если в таблице 2 имеются пустые элементы, то р теперь становится числом элементов в графе j таблицы 2, содержащих данные, и суммирование выполняют без пустых элементов.
4.5.4 Для каждого уровня j в эксперименте рассчитывают среднее и стандартное отклонения средних значений в графе j таблицы 3, используя формулы:
, (10)
, (11)
где Σ - знак суммирования по всем лабораториям i = 1, 2, ..., р.
Если в таблице 3 имеются пустые элементы, то р теперь становится числом элементов в графе j, содержащих данные, и суммирование выполняют без пустых элементов.
4.5.5 Для проверки совместимости данных и наличия выбросов, как описано в 4.6, используют таблицы 2, 3 и статистики, рассчитанные по формулам (8-11). При исключении данных пересчитывают статистики.
4.5.6 Рассчитывают стандартные отклонения повторяемости srj и воспроизводимости sRj по формулам:
, (12)
. (13)
4.5.7 Исследуют, зависят ли srj и sRj от среднего уj и, если это так, находят соответствующие функциональные соотношения, используя методы, описанные в 7.5 ГОСТ Р ИСО 5725-2.
Таблица 2 - Рекомендуемая форма табулирования расхождений в базовых элементах для эксперимента с разделенными уровнями
Номер лаборатории | Уровень |
1 | 2 |
| j |
| q |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
|
|
|
|
|
|
|
|
|
|
|
|
|