Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

50779.21-96; Страница 15

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 50779.11-2000 Статистические методы. Статистическое управление качеством. Термины и определения ГОСТ Р 50779.11-2000 Статистические методы. Статистическое управление качеством. Термины и определения Statistical methods. Statistical quality control. Terms and definitions (Настоящий стандарт устанавливает термины и определения понятий в области статистических методов управления качеством продукции, процессов и услуг) ГОСТ Р 50779.30-95 Статистические методы. Приемочный контроль качества. Общие требования ГОСТ Р 50779.30-95 Статистические методы. Приемочный контроль качества. Общие требования Statistical methods. Acceptance sampling. General requirements (Стандарт распространяется на:. - контроль поставщика. - контроль потребителя. - контроль третьей стороны. Настоящий стандарт подлежит применению при:. - разработке государственных стандартов, устанавливающих правила, порядок, схемы и планы статистического приемочного контроля, в том числе для целей сертификации;. - разработке технических условий, стандартов предприятий, инструкций, определяющих выборочные методы контроля и испытаний и правила приемки;. - разработке методик, правил, рекомендаций и программных средств для компьютеров в области статистического приемочного контроля качества (СПК);. - разработке инструкций для проведения СПК при рассмотрении в Государственном арбитраже или суде дел, касающихся качества продукции;. - разработке рекомендаций, правил и методик проведения СПК для государственных и общественных инспекций по качеству) ГОСТ Р 50779.40-96 Статистические методы. Контрольные карты. Общее руководство и введение ГОСТ Р 50779.40-96 Статистические методы. Контрольные карты. Общее руководство и введение Statistical methods. Control charts. General guide and introduction (Настоящий стандарт устанавливает ключевые элементы и основные принципы применения контрольных карт (КК). В стандарте приведена характеристика видов КК, включающих в себя КК, аналогичные КК Шухарта, а также КК приемки и прогноза состояния процесса. Стандарт содержит обзор основных принципов и положений и сравнительные примеры применения различных КК с целью найти наиболее приемлемые из них для данных конкретных условий. В стандарте не приведены специальные методы статистического управления, использующие КК. Эти методы рассмотрены в ГОСТ Р 50779.41 и ГОСТ Р 50779.43)
Страница 15
15

1 Двусторонний случай:

Предположение равенства дисперсии (стандартного отклонения) и заданного значения (нулевая гипотеза) отклоняется, если:

или

2 Односторонний случай:

а) Предположение о том. что дисперсия (стандартное отклонение) не больше заданного значения (нулевая гипотеза) отклоняется, если:

б) Предположение о том, что дисперсия (стандартное отклонение) не меньше заданного значения (нулевая гипотеза) отклоняется, если:

Примечание - Квантили χ2-распределения определяют по таблице В.1 приложения В

Примеры

1 Оценка точности одного оборудования или технологического процесса в сравнении с известной точностью (т. е. известным параметром σ0) другого оборудования или технологического процесса.

2 Сравнение степени однородности одной совокупности изделий (т. е. величины разброса показателя качества) с известной заранее степенью однородности, характеризуемой стандартным отклонением σ0.

7.3 Алгоритм решения задачи сравнения дисперсий или стандартных отклонений двух генеральных совокупностей приведен в таблице 7.3.

Таблица 7.3 - Сравнение дисперсий или стандартных отклонений двух генеральных совокупностей

Статистические и исходные данные

Табличные данные и вычисления


Первая выборка

Вторая выборка

1 Вычисляем:

1 Объем выборки:

n1 =

n2 =

;

2 Сумма значений наблюдаемых величин:

Σx1 =

Σx2 =

3 Сумма квадратов значений наблюдаемых величин:

Σx21 =

Σx22 =

2 Вычисляем:

4 Степени свободы

v1 = n1 - 1 =

v2 = n2 1 =

5 Выбранный уровень значимости:

α =

3 Квантили распределения Фишера:

F1-α/2(v1, v2) =

F1-α(v1, v2) =

Результаты:

Сравнение дисперсий двух совокупностей: