Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

50779.21-96; Страница 12

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 50779.11-2000 Статистические методы. Статистическое управление качеством. Термины и определения ГОСТ Р 50779.11-2000 Статистические методы. Статистическое управление качеством. Термины и определения Statistical methods. Statistical quality control. Terms and definitions (Настоящий стандарт устанавливает термины и определения понятий в области статистических методов управления качеством продукции, процессов и услуг) ГОСТ Р 50779.30-95 Статистические методы. Приемочный контроль качества. Общие требования ГОСТ Р 50779.30-95 Статистические методы. Приемочный контроль качества. Общие требования Statistical methods. Acceptance sampling. General requirements (Стандарт распространяется на:. - контроль поставщика. - контроль потребителя. - контроль третьей стороны. Настоящий стандарт подлежит применению при:. - разработке государственных стандартов, устанавливающих правила, порядок, схемы и планы статистического приемочного контроля, в том числе для целей сертификации;. - разработке технических условий, стандартов предприятий, инструкций, определяющих выборочные методы контроля и испытаний и правила приемки;. - разработке методик, правил, рекомендаций и программных средств для компьютеров в области статистического приемочного контроля качества (СПК);. - разработке инструкций для проведения СПК при рассмотрении в Государственном арбитраже или суде дел, касающихся качества продукции;. - разработке рекомендаций, правил и методик проведения СПК для государственных и общественных инспекций по качеству) ГОСТ Р 50779.40-96 Статистические методы. Контрольные карты. Общее руководство и введение ГОСТ Р 50779.40-96 Статистические методы. Контрольные карты. Общее руководство и введение Statistical methods. Control charts. General guide and introduction (Настоящий стандарт устанавливает ключевые элементы и основные принципы применения контрольных карт (КК). В стандарте приведена характеристика видов КК, включающих в себя КК, аналогичные КК Шухарта, а также КК приемки и прогноза состояния процесса. Стандарт содержит обзор основных принципов и положений и сравнительные примеры применения различных КК с целью найти наиболее приемлемые из них для данных конкретных условий. В стандарте не приведены специальные методы статистического управления, использующие КК. Эти методы рассмотрены в ГОСТ Р 50779.41 и ГОСТ Р 50779.43)
Страница 12
12

тогда доверительная вероятность равна 1 - α


Результаты:

1 Точечная оценка разности между средними значениями параметров μ1 и μ2 для двух совокупностей:

(μ1 - μ2)Υ = 1 - 2

2 Односторонний доверительный интервал для разности (μ1 - μ2):

(μ1 - μ2) < (1 - 2) + u1-ασd или

(μ1 - μ2) > (1 - 2) - u1-ασd

3 Двусторонний доверительный интервал для разности (μ1 - μ2):

(1 - 2) - u1-α/2σd < (μ1 - μ2) < (1 - 2) + u1-α/2σd

4 Предположение равенства средних значений (нулевая гипотеза) отклоняется, если:

/1 - 2/ > u1-α/2(v)σd

Примечание - Квантили стандартного нормального закона распределения определяют по таблице А.1 приложения А

Пример - Сопоставление однотипных средних значений показателя качества для двух технологических процессов или двух совокупностей изделий. Считается, что дисперсии для обоих технологических процессов или совокупностей известны.

Например, оценка разности средней толщины гальванического покрытия двух партий одинаковых изделий; оценка разности среднего содержания вредных примесей в двух партиях химикатов и т. п.

6.8 Алгоритм точечного и интервального оценивания разности двух средних значений при неизвестных, но равных дисперсиях приведен в таблице 6.8.

Таблица 6.8 - Оценка разности двух средних значений при неизвестных, но равных* дисперсиях

___________

* Гипотезы равенства дисперсий двух генеральных совокупностей могут быть проверены по таблице 7.3 раздела 7.

Статистические и исходные данные

Табличные данные и вычисления


Первая выборка

Вторая выборка


1 Объем выборки:

n1 =

n2 =

1 Квантиль распределения Стьюдента уровня (1 - α) с v степенями свободы:

t1-α(v) =

2 Суммы значений наблюдаемых величин:

Σx1 =

Σx2 =

2 Квантиль распределения Стьюдента уровня (1 - α/2) с v степенями свободы:

t1-α/2(v) =

3 Сумма квадратов значений наблюдаемых величин:

Σx21 =

Σx22 =

3 Вычисляем:

;

4 Степени свободы

v = n1 + n2 - 2 =

4 Вычисляем:

5 Выбранная доверительная вероятность:

1 - α

5 Вычисляем: