Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 16.02.2026 по 22.02.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 50779.10-2000; Страница 5

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 50779.0-95 Статистические методы. Основные положения ГОСТ Р 50779.0-95 Статистические методы. Основные положения Statistical methods. General (Настоящий стандарт устанавливает структуру нормативно-технического обеспечения применения статистических методов при производств и контроле качества продукции. Настоящий стандарт применяется при разработке государственных стандартов, устанавлиаающих требования к использованию статистических методов на всех стадиях жизненного цикла продукции) ГОСТ Р 50779.11-2000 Статистические методы. Статистическое управление качеством. Термины и определения ГОСТ Р 50779.11-2000 Статистические методы. Статистическое управление качеством. Термины и определения Statistical methods. Statistical quality control. Terms and definitions (Настоящий стандарт устанавливает термины и определения понятий в области статистических методов управления качеством продукции, процессов и услуг) ГОСТ 50779.21-96 Статистические методы правила определения и методы расчета статистических характеристик по выборочным данным. Часть 1 Нормальное распределение. Стандарт устанавливает процедуры и методы решения ряда практических задач статистики в случае, когда наблюдаемые величины являются случайными и распределены по нормальному закону
Страница 5
5

1.11. независимость (случайных величин)

Две случайные величины Х и Y независимы, если их функции распределения представлены как

где F (х, ?) = G (х) и F (?, у) = Н (у) - маргинальные функции распределения X и Y, соответственно, для всех пар (х, у).

Примечания:

1. Для непрерывной независимой случайной величины ее плотность распределения, если она существует, выражают как

где g (x) и h (у) - маргинальные плотности распределения Х и Y, соответственно, для всех пар (х, у).

Для дискретной независимой случайной величины ее вероятности выражают как

для всех пар (xi, уj).

2. Два события независимы, если вероятность того, что они оба произойдут, равна произведению вероятностей этих двух событий.

1.12. параметр

Величина, используемая в описании распределения вероятностей некоторой случайной величины.

1.13. корреляция

Взаимозависимость двух или нескольких случайных величин в распределении двух или нескольких случайных величин.

Примечание - Большинство статистических мер корреляции измеряют только степень линейной зависимости.

1.14. квантиль (случайной величины)

Значение случайной величины хp, для которого функция распределения принимает значение p (0 ? p ? 1) или ее значение изменяется скачком от меньшего p до превышающего р.

Примечания

1. Если значение функции распределения равно p во всем интервале между двумя последовательными значениями случайной величины, то любое значение в этом интервале можно рассматривать как p-квантиль.

2. Величина хp будет p-квантилем, если

3. Для непрерывной величины p-квантиль - это то значение переменной, ниже которого лежит р-я доля распределения.

4. Процентиль - это квантиль, выраженный в процентах.

1.15. медиана

Квантиль порядка p = 0,5.

1.16. квартиль

Квантиль порядка p = 0,25 или p = 0,75.

1.17. мода

Значение случайной величины, при котором функция распределения вероятностей масс или плотность распределения вероятностей имеет максимум.

Примечание - Если имеется единственная мода, то распределение вероятностей случайной величины называется унимодальным; если имеется более чем одна мода, оно называется многомодальным, в случае двух мод - бимодальным.

1.18. математическое ожидание (случайной величины)

а) Для дискретной случайной величины X, принимающей значения xi с вероятностями pi, математическое ожидание, если оно существует, определяют формулой

где суммируют все значения xi, которые может принимать случайная величина X.

b) Для непрерывной случайной величины X, имеющей плотность f (x), математическое ожидание, если оно существует, определяют формулой

где интеграл берут по всему интервалу (интервалам) изменения Х.