Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 16.02.2026 по 22.02.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 50779.10-2000; Страница 4

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 50779.0-95 Статистические методы. Основные положения ГОСТ Р 50779.0-95 Статистические методы. Основные положения Statistical methods. General (Настоящий стандарт устанавливает структуру нормативно-технического обеспечения применения статистических методов при производств и контроле качества продукции. Настоящий стандарт применяется при разработке государственных стандартов, устанавлиаающих требования к использованию статистических методов на всех стадиях жизненного цикла продукции) ГОСТ Р 50779.11-2000 Статистические методы. Статистическое управление качеством. Термины и определения ГОСТ Р 50779.11-2000 Статистические методы. Статистическое управление качеством. Термины и определения Statistical methods. Statistical quality control. Terms and definitions (Настоящий стандарт устанавливает термины и определения понятий в области статистических методов управления качеством продукции, процессов и услуг) ГОСТ 50779.21-96 Статистические методы правила определения и методы расчета статистических характеристик по выборочным данным. Часть 1 Нормальное распределение. Стандарт устанавливает процедуры и методы решения ряда практических задач статистики в случае, когда наблюдаемые величины являются случайными и распределены по нормальному закону
Страница 4
4

1.5. плотность распределения (вероятностей)

Первая производная, если она существует, функции распределения непрерывной случайной величины

Примечание - называется элементом вероятности

1.6. функция распределения (вероятностей) масс

Функция, дающая для каждого значения xi дискретной случайной величины Х вероятность pi того, что случайная величина равна хi:

1.7. двумерная функция распределения

Функция, дающая для любой пары значений х, у вероятность того, что случайная величина X будет меньше или равна х, а случайная величина Y - меньше или равна y:

Примечание - Выражение в квадратных скобках означает пересечение событий Х ? х и Y ? у

1.8. многомерная функция распределения

Функция, дающая для любого набора значений х, у, ... вероятность того, что несколько случайных величин X, Y, ... будут меньше или равны соответствующим значениям х, у, ...:

1.9. маргинальное распределение (вероятностей)

Распределение вероятностей подмножества k1 из множества k случайных величин, при этом остальные (k - k1) случайные величины принимают любые значения в соответствующих множествах возможных значений.

Примечание - Для распределения вероятностей трех случайных величин X, Y, Z существуют:

- три двумерных маргинальных распределения, т.е. распределения пар (X, Y), (X, Z), (Y, Z);

- три одномерных маргинальных распределения, т.е. распределения X, Y и Z.

1.10. условное распределение (вероятностей)

Распределение подмножества k1 < k случайных величин из распределения случайных величин, когда остальные (k - k1) случайные величины принимают постоянные значения.

Примечание - Для распределения вероятностей двух случайных величин X, Y существуют:

- условные распределения X: некоторое конкретное распределение представляют как «распределение X при Y = y»; - условные распределения Y: некоторое конкретное распределение представляют как «распределение Y при Х = х».

1.11. независимость (случайных величин)

Две случайные величины Х и Y независимы, если их функции распределения представлены как

где F (х, ?) = G (х) и F (?, у) = Н (у) - маргинальные функции распределения X и Y, соответственно, для всех пар (х, у).

Примечания:

1. Для непрерывной независимой случайной величины ее плотность распределения, если она существует, выражают как

где g (x) и h (у) - маргинальные плотности распределения Х и Y, соответственно, для всех пар (х, у).

Для дискретной независимой случайной величины ее вероятности выражают как

для всех пар (xi, уj).

2. Два события независимы, если вероятность того, что они оба произойдут, равна произведению вероятностей этих двух событий.