Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54500.1-2011; Страница 7

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба Whole meal and flour from Triticum Aestivum. Determination of water absorption and rheological properties using a mixolab (Настоящий стандарт устанавливает метод определения водопоглощения и реологических свойств теста для муки из мягкой пшеницы и размолотого зерна мягкой пшеницы, имеющего крупность частиц, соответствующую требованиям настоящего стандарта) ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement (Настоящее Руководство устанавливает общие правила оценивания и выражения неопределенности измерения, которые следует соблюдать при измерениях разной точности и в разных областях - от технических измерений на производстве до фундаментальных научных исследований) ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte Carlo method (В настоящем стандарте установлен численный метод, согласующийся с основными принципами GUM [Руководство ИСО/МЭК 98-3 (G.1.5)] и предназначенный для получения оценки неопределенности измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную величину, в которых входные величины характеризуются любыми заданными функциями распределения вероятностей [Руководство ИСО/МЭК 98-3])
Страница 7
7

Настоящий документ, дополнения к GUM и другие сопутствующие документы следует использо­вать совместно с Международным словарем по метрологии (VIM, далее при ссылках JCGM 200), а также с международными стандартами ИСО 3534-1, ИСО 3524-2 и ИСО 3534-3, в которых определены термины, используемые в математической статистике и теории вероятностей (включая прикладную ста­тистику и планирование экспериментов), и показано их место в структуре понятий в соответствии с нор­мативной терминологической практикой. Последнее важно с учетом того обстоятельства, что теоретической основой оценивания данных измерений и неопределенности измерений является математическая статистика и теория вероятностей.

  1. Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:

JCGM 100:2008 Оценивание данных измерений. Руководство по выражению неопределенности измерения (GUM) [JCGM 100:2008 Evaluation of measurement data Guide to the expression of uncertainty in measurement (GUM)]

JCGM 101:2008 Оценивание данных измерений. Дополнение 1 к «Руководству по выражению неопределенности измерения». Трансформирование распределений с использованием метода Мон­те-Карло (JCGM101:2008Evaluationofmeasurementdata Supplement1 to the «Guide to the expression of uncertainty in measurement» Propagation of distributions using a Monte Carlo method)

JCGM 200:2008 Международный словарь по метрологии. Основные и общие понятия и связанные с ними термины (VIM) (JCGM 200:2008 International Vocabulary of Metrology Basic and general concepts and associated terms)

ИСО 3534-1:2006 Статистика. Словарь и условные обозначения. Часть 1. Общие термины по ста­тистике и термины, используемые в теории вероятностей (ISO 3534-1:2006 Statistics Vocabulary and symbols Part 1: General statistical terms and terms used in probability)

ИСО 3534-2:2006 Статистика. Словарь и условные обозначения. Часть 2. Прикладная статистика (ISO 3534-2:2006 Statistics Vocabulary and symbols Part 2: Applied statistics)

ИСО 3534-3:1999 Статистика. Словарь и условные обозначения. Часть 3. Планирование экспери­мента (ISO 3534-3:1999 Statistics Vocabulary and symbols Part3: Design of experiments)

  1. Понятие неопределенности измерения
    1. Цель измерения состоит в получении информации об интересующей величине, называемой измеряемой величиной (JCGM 200, словарная статья 2.3). Измеряемой величиной может быть объем сосуда, разность потенциалов на клеммах батареи или массовая концентрация свинца в колбе с водой.
    2. Абсолютно точных измерений не существует. При проведении измерения его результат зави­сит от измерительной системы (JCGM 200, словарная статья 3.2), методики измерения, квалификации оператора, внешних условий и других факторов [1]. Так, если измерять одну и ту же величину несколько раз одним способом и в одинаковых условиях, то, как правило, при достаточной разрешающей способ­ности измерительной системы, позволяющей различать близкие показания (JCGM 200, словарная статья 4.1), эти показания (полученные значения измеряемой величины [JCGM 200, словарная статья 2.10]) всякий раз будут разными. Показания рассматривают как мгновенные реализации соответствующей случайной величины.
    3. Разброс показаний позволяет судить о качестве проведенного измерения. Их среднее должно обеспечить значение оценки (ИСО 3534-1, словарная статья 1.31) истинного значения величины (JCGM 200, словарная статья 2.11), которая в общем случае будет более достоверной, чем отдельное показание. Разброс показаний и их число дают некоторую информацию в отношении среднего значения как оценки истинного значения величины. Однако эта информация в большинстве случаев не будет достаточной.

Измерительная система может давать показания, которые рассеяны не вокруг истинного зна­чения величины, а вокруг некоторого другого, смещенного значения. Разницу между смещенным значе­нием и истинным значением величины иногда называют значением систематической погрешности (JCGM 200, словарная статья 2.17). Возьмем для примера домашние весы в ванной. Предположим, что в отсутствие нагрузки они показывают не ноль, а некоторое отличное от нуля значение. Тогда вне зависи­мости от числа повторных измерений массы встающего на весы человека влияние этого смещения будет неизменно присутствовать в среднем значении показаний. В большинстве случаев систематическая погрешность, рассматриваемая как величина, это составляющая погрешности, которая остается постоянной или зависит определенным образом от какой-то другой величины.