20
- Выбор границ интервала приемки зависит от последствий принятия ошибочных решений.
- Хотя сказанное в 8.3 и 8.5 справедливо для любых распределений вероятностей, в [7], в основном, рассматривается случай нормального распределения как наиболее характерного для практики.
- Применение метода наименьших квадратов
- Руководство по применению метода наименьших квадратов (известного также как подгонка методом наименьших квадратов) для задач по оцениванию данных в метрологии представлено в [3]. В таких задачах часто используется некоторое теоретическое соотношение между независимой и зависимой переменными. Это соотношение составляет основу для подгонки кривой под имеющиеся данные посредством подбора параметров теоретической зависимости. Входные величины в соответствующей модели измерений — это зависимые и независимые переменные, для которых получены данные измерений. Выходные величины — это искомые параметры зависимости. Способ, которым выходные величины получают из входных величин посредством метода наименьших квадратов, определяет модель измерения.
- Применительно к калибровке (см. 6.8) значение измеряемой величины независимой переменной в большинстве случаев получают от эталона. Значение зависимой переменной будет показанием, полученным измерительной системой для соответствующего значения независимой переменной. Установленная в [3] процедура подгонки кривой, частным случаем которой является градуировочная характеристика, получаемая в процессе калибровки, является обобщением обычного метода наименьших квадратов.
- Измерительная задача состоит в том, чтобы оценить параметры (а иногда и число этих параметров) поданным, представляющим собой набор пар из полученного значения измеряемой величины и соответствующего показания. Эти пары вместе с ассоциированными стандартными неопределенностями и, когда уместно, ковариациями, составляют исходные данные для процедуры подгонки.
- Типичные измерительные задачи, к которым может быть применено руководство [3], включают в себя: а) подгонку линейных и нелинейных зависимостей, включая случай неточно известных значений независимой переменной; b) выбор модели из некоторого класса для оценки параметров физического процесса. Применение [3] не ограничено в самом строгом смысле задачами подгонки кривой. Это руководство может также быть использовано для обработки данных, например, в задачах свертки [21], согласования фундаментальных констант [22] и оценивания данных ключевых сличений [9].
- Задачи, указанные в 9.4, перечисление а), предполагают, что после оценивания методом наименьших квадратов параметров градуировочной характеристики и ассоциированных с ними стандартных неопределенностей и ковариаций измерительная система будет далее использоваться для проведения измерения, входе которого оценки параметров градуировочной характеристики вместе со значением полученного показания используют для оценивания измеряемой величины. Стандартную неопределенность, ассоциированную со значением оценки измеряемой величины, вычисляют с использованием стандартных неопределенностей и ковариаций для параметров градуировочной характеристики и стандартной неопределенностью, ассоциированной с показанием измерительной системы.
- В [3] особо подчеркивается, что постановку и решение измерительной задачи методом наименьших квадратов следует осуществлять с учетом структуры неопределенности, т. е. с учетом стандартных неопределенностей для зависимых и независимых переменных и ковариаций для пар этих переменных.
Задачи, указанные в 9.4, перечисления а) и b), редко предполагают подгонку кзначениям только одной выходной величины. Чаще случается так, что выходных величин несколько, поэтому соответствующие математические выражения удобнее представлять в матричной форме. В [3] матричный формализм использован максимально широко, что облегчает программирование алгоритма вычислений и соответствует потребностям практики измерений (см. также 7.5).