19
- В [5] установлено, что закон трансформирования неопределенностей, составляющий основное содержание способа оценивания неопределенности по GUM для модели измерения с одной выходной величиной, может быть кратко представлен в матричной форме. Преимущество матричного представления состоит в том, что оно удобно для программной реализации метода, а также легко допускает обобщение на другие модели измерения.
- Указанное обобщение использовано в [5] для случая функции измерения с произвольным числом выходных величин. Аналогичное обобщение рассматривается в указанном документе и для случая модели измерения, представленной в общем виде (см. 3.16).
- Документ [5] также рассматривает применение для модели измерения с произвольным чис- ломвыходных величин метода Монте-Карло. Внемдаетсявывод распределений вероятностей дискретного вида для выходных величин. На основе этих распределений получены формулы для значений оценок выходных величин, стандартных неопределенностей, ассоциированных с этими оценками, и ковариаций, ассоциированных с парами этих оценок.
- Требования к представлению результата измерения могут включать в себя, помимо указания значений оценок выходных величин вместе с ассоциированными стандартными неопределенностями и ковариациями, указание области, содержащей выходные величины с заданной вероятностью (охвата). Такие области естественно было бы рассматривать как обобщения для вероятностно симметричного интервала охвата и наименьшего интервала охвата. Но если для наименьшего интервала охвата его пространственный аналог существует (хотя его построение и сопряжено со значительными трудностями), то этого нельзя сказать в отношении области, аналогичной вероятностно симметричному интервалу охвата, которая не может быть определена единственным образом.
- В ряде случаев целесообразно указывать приближенную область охвата, имеющую простую геометрическую форму. С этой точки зрения рассматриваются две формы области охвата. Первая вытекает из ассоциирования выходных величин с совместным распределением Гаусса, например, на основе использования центральной предельной теоремы [см. JCGM 100 (раздел G.2)]. Тогда наименьшая область охвата будет иметь вид многомерного эллипсоида. Другой формой является многомерный параллелепипед. В [5] приведены способы построения наименьших областей охвата указанных двух форм.
- Применение неопределенности измерения для оценки соответствия
- Оценка соответствия — важный аспект управления качеством производства, метрологического надзора, проверки соответствия требованиям безопасности и санитарным нормам. Так при контроле качества деталей на производстве принимают решения о соответствии деталей техническим условиям. Аналогичныевопросы возникаютпри проверке соответствия законодательно установленным нормативам (например, по выбросам, уровню радиации, содержанию химических веществ, наличию следов допинга). Руководство, в котором рассматриваются подобные вопросы, приведено в [7] (см. также [18]).
- Измерение является неотъемлемой частью оценки соответствия, когда необходимо решить, соответствует ли выходная (измеряемая) величина установленному требованию. Для единственной величины такое требование обычно принимает вид границ, определяющих интервал допустимыхзначе- ний величины. При отсутствии неопределенности полученное значение измеряемой величины, лежащее в пределах границ, считают соответствующим требованиям, в противном случае — несоответствующим. Наличие неопределенности измерения влияет на процедуру контроля и делает необходимым установление баланса рисков производителя и потребителя.
- Возможные значения контролируемой величины У представляют распределением вероятностей. Можно рассчитать вероятностью которой У соответствует установленнымтребованиям приданном распределении вероятностей и заданных границах допустимых значений.
- Из-за неполного знания величины У (что отражает ее распределение вероятностей) существует рискошибочного решения при определении соответствия установленным требованиям. Ошибочные решения бывают двух типов: когда значение величины признано соответствующим требованиям, но на самом деле им не является, и когда значение величины признано несоответствующим, но на самом деле установленным требованиям удовлетворяет. Связанные с этим риски относят, соответственно, к риску потребителя и риску производителя (см. [7]).
Риски ошибочного решения в части соответствия или несоответствия установленным требованиям можно уравновесить, выбирая интервал приемки для полученных значений измеряемой величины таким образом, чтобы минимизировать потери, связанные с ошибочными решениями [19]. В [7] рассматривается задача вычисления вероятности соответствия и вероятностей ошибочных решений указанных двух типов для заданных распределений вероятностей и заданных границ интервала приемки.