Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54500.1-2011; Страница 19

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба Whole meal and flour from Triticum Aestivum. Determination of water absorption and rheological properties using a mixolab (Настоящий стандарт устанавливает метод определения водопоглощения и реологических свойств теста для муки из мягкой пшеницы и размолотого зерна мягкой пшеницы, имеющего крупность частиц, соответствующую требованиям настоящего стандарта) ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement (Настоящее Руководство устанавливает общие правила оценивания и выражения неопределенности измерения, которые следует соблюдать при измерениях разной точности и в разных областях - от технических измерений на производстве до фундаментальных научных исследований) ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte Carlo method (В настоящем стандарте установлен численный метод, согласующийся с основными принципами GUM [Руководство ИСО/МЭК 98-3 (G.1.5)] и предназначенный для получения оценки неопределенности измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную величину, в которых входные величины характеризуются любыми заданными функциями распределения вероятностей [Руководство ИСО/МЭК 98-3])
Страница 19
19
      1. В [5] установлено, что закон трансформирования неопределенностей, составляющий основ­ное содержание способа оценивания неопределенности по GUM для модели измерения с одной выход­ной величиной, может быть кратко представлен в матричной форме. Преимущество матричного представления состоит в том, что оно удобно для программной реализации метода, а также легко допус­кает обобщение на другие модели измерения.
      2. Указанное обобщение использовано в [5] для случая функции измерения с произвольным числом выходных величин. Аналогичное обобщение рассматривается в указанном документе и для слу­чая модели измерения, представленной в общем виде (см. 3.16).
      3. Документ [5] также рассматривает применение для модели измерения с произвольным чис- ломвыходных величин метода Монте-Карло. Внемдаетсявывод распределений вероятностей дискрет­ного вида для выходных величин. На основе этих распределений получены формулы для значений оценок выходных величин, стандартных неопределенностей, ассоциированных с этими оценками, и ковариаций, ассоциированных с парами этих оценок.
      4. Требования к представлению результата измерения могут включать в себя, помимо указа­ния значений оценок выходных величин вместе с ассоциированными стандартными неопределенностя­ми и ковариациями, указание области, содержащей выходные величины с заданной вероятностью (охвата). Такие области естественно было бы рассматривать как обобщения для вероятностно симмет­ричного интервала охвата и наименьшего интервала охвата. Но если для наименьшего интервала охва­та его пространственный аналог существует (хотя его построение и сопряжено со значительными трудностями), то этого нельзя сказать в отношении области, аналогичной вероятностно симметричному интервалу охвата, которая не может быть определена единственным образом.
      5. В ряде случаев целесообразно указывать приближенную область охвата, имеющую простую геометрическую форму. С этой точки зрения рассматриваются две формы области охвата. Первая выте­кает из ассоциирования выходных величин с совместным распределением Гаусса, например, на основе использования центральной предельной теоремы [см. JCGM 100 (раздел G.2)]. Тогда наименьшая область охвата будет иметь вид многомерного эллипсоида. Другой формой является многомерный параллелепипед. В [5] приведены способы построения наименьших областей охвата указанных двух форм.
  1. Применение неопределенности измерения для оценки соответствия
    1. Оценка соответствия важный аспект управления качеством производства, метрологичес­кого надзора, проверки соответствия требованиям безопасности и санитарным нормам. Так при контро­ле качества деталей на производстве принимают решения о соответствии деталей техническим условиям. Аналогичныевопросы возникаютпри проверке соответствия законодательно установленным нормативам (например, по выбросам, уровню радиации, содержанию химических веществ, наличию следов допинга). Руководство, в котором рассматриваются подобные вопросы, приведено в [7] (см. также [18]).
    2. Измерение является неотъемлемой частью оценки соответствия, когда необходимо решить, соответствует ли выходная (измеряемая) величина установленному требованию. Для единственной величины такое требование обычно принимает вид границ, определяющих интервал допустимыхзначе- ний величины. При отсутствии неопределенности полученное значение измеряемой величины, лежа­щее в пределах границ, считают соответствующим требованиям, в противном случае несоответствующим. Наличие неопределенности измерения влияет на процедуру контроля и делает необходимым установление баланса рисков производителя и потребителя.
    3. Возможные значения контролируемой величины У представляют распределением вероятнос­тей. Можно рассчитать вероятностью которой У соответствует установленнымтребованиям приданном распределении вероятностей и заданных границах допустимых значений.
    4. Из-за неполного знания величины У (что отражает ее распределение вероятностей) существу­ет рискошибочного решения при определении соответствия установленным требованиям. Ошибочные решения бывают двух типов: когда значение величины признано соответствующим требованиям, но на самом деле им не является, и когда значение величины признано несоответствующим, но на самом деле установленным требованиям удовлетворяет. Связанные с этим риски относят, соответственно, к риску потребителя и риску производителя (см. [7]).

Риски ошибочного решения в части соответствия или несоответствия установленным требо­ваниям можно уравновесить, выбирая интервал приемки для полученных значений измеряемой вели­чины таким образом, чтобы минимизировать потери, связанные с ошибочными решениями [19]. В [7] рассматривается задача вычисления вероятности соответствия и вероятностей ошибочных решений указанных двух типов для заданных распределений вероятностей и заданных границ интервала прием­ки.