Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54500.1-2011; Страница 16

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба Whole meal and flour from Triticum Aestivum. Determination of water absorption and rheological properties using a mixolab (Настоящий стандарт устанавливает метод определения водопоглощения и реологических свойств теста для муки из мягкой пшеницы и размолотого зерна мягкой пшеницы, имеющего крупность частиц, соответствующую требованиям настоящего стандарта) ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement (Настоящее Руководство устанавливает общие правила оценивания и выражения неопределенности измерения, которые следует соблюдать при измерениях разной точности и в разных областях - от технических измерений на производстве до фундаментальных научных исследований) ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte Carlo method (В настоящем стандарте установлен численный метод, согласующийся с основными принципами GUM [Руководство ИСО/МЭК 98-3 (G.1.5)] и предназначенный для получения оценки неопределенности измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную величину, в которых входные величины характеризуются любыми заданными функциями распределения вероятностей [Руководство ИСО/МЭК 98-3])
Страница 16
16
    1. В [6] рассматриваются также модели многоступенчатого измерения, в которых выходные величины предшествующих ступеней становятся входными величинами для последующих ступеней. Типичным примером модели многоступенчатого измерения может служить построение и применение градуировочной характеристики (JCGM 200, словарная статья 2.39) (см. рисунок 6):
  1. параметры градуировочной характеристики оценивают, сравнивая размеры единицы измере­ния, переданные от эталонов, с соответствующими показаниями измерительной системы. Стандартные неопределенности, ассоциированные с полученными значениями измеряемой величины и значениями показаний, являются источниками стандартных неопределенностей для значений оценок параметров градуировочной характеристики и, в общем случае, ковариаций для оценок этих параметров;
  2. полученное измерительной системой показание по градуировочной характеристике преобразу­ют в значение измеряемой величины. Для этого используется функция, обратная градуировочной харак­теристике. Стандартные неопределенности и ковариации, ассоциированные со значениями оценок параметров градуировочной характеристики, вместе со стандартной неопределенностью, ассоцииро­ванной со значением очередного показания, являются источниками для расчета стандартной неопреде­ленности, ассоциированной с полученным значением измеряемой величины.


  1. Трансформирование распределений и вычисление значений оценок
    1. Общие положения
      1. Этап вычисленийвключаетвсебяпроцедуру, известнуюкак трансформирование распреде­лений [см. JCGM 101, (5.2)], которая может быть реализована следующими способами:
  1. в виде используемого в GUM закона трансформирования неопределенностей с описанием слу­чайной величины, ассоциированной с выходной величиной Y, распределением Гаусса или /-распреде­лением (см. 7.2);
  2. в виде аналитического вывода формы распределения вероятностей для Yметодами математи­ческого анализа (см. 7.3);
  3. с помощью метода Монте-Карло, в котором приближенную функцию распределения для Yполу­чают численным моделированием, генерируя случайные значения из распределений вероятностей для входных величин и преобразуя их в значения измеряемой величины посредством модели измерений (см. 7.4).
      1. Для конкретной задачи оценивания неопределенности измерений может быть использован любой из способов, перечисленных в 7.1.1 (или какой-нибудь иной метод), причем способ а) является в большинстве случаев приближенным, способ b) точным, а способ с) дает решение с числовой точ­ностью, которую можно контролировать.

Применение способов а) и с) к функциям измерения для общеупотребительных моделей измерения с любым числом входных величин рассматривается в 7.5.