12
- Часто необходимо знать интервал, содержащий Y с заданной вероятностью. Такой интервал, называемый интервалом охвата (JCGM 200, словарная статья 2.36), может быть получен из распределения вероятностей для Y. Заданную вероятность называют вероятностью охвата (JCGM 200, словарная статья 2.37).
- Для установленной вероятности охвата существует множество интервалов охвата, среди которых различают:
- вероятностно симметричный интервал охвата [см. JCGM 101 (3.15)], для которого вероятности (в сумме равные единице за вычетом вероятности охвата) расположения значения величины справа или слева от интервала равны;
- наименьший интервал охвата [см. JCGM 101 (3.16)], протяженность которого является наименьшей из всех интервалов охвата, имеющих ту же вероятность охвата.
На рисунке 4 показано усеченное и масштабированное распределение Гаусса (в виде спадающей кривой) с граничными точками наименьшего (сплошные вертикальные линии) и вероятностно симметричного (пунктирные вертикальные линии) 95 %-ных интервалов охвата для величины, с которой ассоциировано это распределение. Распределение асимметрично, поэтому указанные два интервала охвата различаются между собой (особенно заметно различие в граничных точках справа). Левая граничная точка наименьшего интервала охвата точно совпадает с нулем — наименьшим возможным значением для этой величины. Для данного примера вероятностно симметричный интервал охвата на 15 % протяженней наименьшего интервал охвата.