Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54500.1-2011; Страница 18

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба Whole meal and flour from Triticum Aestivum. Determination of water absorption and rheological properties using a mixolab (Настоящий стандарт устанавливает метод определения водопоглощения и реологических свойств теста для муки из мягкой пшеницы и размолотого зерна мягкой пшеницы, имеющего крупность частиц, соответствующую требованиям настоящего стандарта) ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement (Настоящее Руководство устанавливает общие правила оценивания и выражения неопределенности измерения, которые следует соблюдать при измерениях разной точности и в разных областях - от технических измерений на производстве до фундаментальных научных исследований) ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte Carlo method (В настоящем стандарте установлен численный метод, согласующийся с основными принципами GUM [Руководство ИСО/МЭК 98-3 (G.1.5)] и предназначенный для получения оценки неопределенности измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную величину, в которых входные величины характеризуются любыми заданными функциями распределения вероятностей [Руководство ИСО/МЭК 98-3])
Страница 18
18
      1. Использование способа оценивания неопределенности по GUM усложняется при нахожде­нии частных производных (или их численных приближений) для сложной модели измерений, что являет­ся необходимым для применения закона трансформирования неопределенностей, особенно, если необходимо рассчитывать производные высших порядков [см. JCGM 100 (раздел 5)]. В таких случаях более подходящим и удобным для применения является метод Монте-Карло (см. 7.4).
    1. Аналитический вывод
      1. Аналитические методы, с помощью которых может быть получена алгебраическая формула для распределения вероятностей выходной величины, несодержатникакихприближений, но могутбыть применены только в сравнительно простых случаях. В [8], [12] показаны возможности применения таких методов. В число измерительных задач, для которых возможен аналитический вывод, входят те, где выходная величина является линейной функцией N входных величин [см. формулу (3)], которые все рас­пределены либо по нормальному закону, либо по прямоугольному закону в одних и техже границах. При­мер для двух входных величин (N = 2) с прямоугольными распределениями вероятности, которые дают трапецеидальное распределение выходной величины (см. [10]), показан на рисунке 3.
      2. Часто аналитический вывод возможен для случаев, когда модель измерения включает в себя только одну входную величину (N = 1) (см. [25, стр. 5761]). Такие случаи возникают при преобра­зовании единиц измерения, например, из линейных в логарифмические (см. [10, стр. 9598]).
      3. Преимуществом аналитического вывода является то, что он дает возможность понять суть измерения, показывая зависимость распределения вероятностей выходной величины от параметров распределений вероятностей входных величин.
    2. Метод Монте-Карло
      1. JCGM 101 устанавливает подробное руководство по методу Монте-Карло как способу транс­формирования распределений [см. JCGM 101 (5.9)]. Для метода Монте-Карло существует меньше огра­ничений по применению, чем для способа оценивания неопределенности по GUM [см. JCGM 101 (5.10)]. Схематично метод показан на рисунке 8. В JCGM 101 приведены примеры сравнения метода Монте-Кар­ло со способом оценивания неопределенности по GUM [см. JCGM 101 (раздел 9)].


      1. JCGM 101 устанавливает адаптивную процедуру для метода Монте-Карло, в которой число испытаний определяется автоматически с использованием меры сходимости всего процесса в целом [см. JCGM 101 (7.9)].
      2. В JCGM 101 показано, как метод Монте-Карло может быть применен, чтобы решить, прием­лемо ли применение способа оценивания неопределенности по GUM для каждого конкретного случая [см. JCGM 101 (раздел 8)].
    1. Модели измерения с произвольным числом выходных величин

В случае измерений с использованием моделей с произвольным числом выходных величин способы оценивания ассоциированных с ними неопределенностей и ковариаций, установленные как в GUM, так и в JCGM 101, требуют соответствующего обобщения. Суть такой модификации показана в GUM на ряде примеров [см. JCGM 100 (F.1.2.3)].