18
- Использование способа оценивания неопределенности по GUM усложняется при нахождении частных производных (или их численных приближений) для сложной модели измерений, что является необходимым для применения закона трансформирования неопределенностей, особенно, если необходимо рассчитывать производные высших порядков [см. JCGM 100 (раздел 5)]. В таких случаях более подходящим и удобным для применения является метод Монте-Карло (см. 7.4).
- Аналитический вывод
- Аналитические методы, с помощью которых может быть получена алгебраическая формула для распределения вероятностей выходной величины, несодержатникакихприближений, но могутбыть применены только в сравнительно простых случаях. В [8], [12] показаны возможности применения таких методов. В число измерительных задач, для которых возможен аналитический вывод, входят те, где выходная величина является линейной функцией N входных величин [см. формулу (3)], которые все распределены либо по нормальному закону, либо по прямоугольному закону в одних и техже границах. Пример для двух входных величин (N = 2) с прямоугольными распределениями вероятности, которые дают трапецеидальное распределение выходной величины (см. [10]), показан на рисунке 3.
- Часто аналитический вывод возможен для случаев, когда модель измерения включает в себя только одну входную величину (N = 1) (см. [25, стр. 57—61]). Такие случаи возникают при преобразовании единиц измерения, например, из линейных в логарифмические (см. [10, стр. 95—98]).
- Преимуществом аналитического вывода является то, что он дает возможность понять суть измерения, показывая зависимость распределения вероятностей выходной величины от параметров распределений вероятностей входных величин.
- Метод Монте-Карло
- JCGM 101 устанавливает подробное руководство по методу Монте-Карло как способу трансформирования распределений [см. JCGM 101 (5.9)]. Для метода Монте-Карло существует меньше ограничений по применению, чем для способа оценивания неопределенности по GUM [см. JCGM 101 (5.10)]. Схематично метод показан на рисунке 8. В JCGM 101 приведены примеры сравнения метода Монте-Карло со способом оценивания неопределенности по GUM [см. JCGM 101 (раздел 9)].
- JCGM 101 устанавливает адаптивную процедуру для метода Монте-Карло, в которой число испытаний определяется автоматически с использованием меры сходимости всего процесса в целом [см. JCGM 101 (7.9)].
- В JCGM 101 показано, как метод Монте-Карло может быть применен, чтобы решить, приемлемо ли применение способа оценивания неопределенности по GUM для каждого конкретного случая [см. JCGM 101 (раздел 8)].
- Модели измерения с произвольным числом выходных величин
В случае измерений с использованием моделей с произвольным числом выходных величин способы оценивания ассоциированных с ними неопределенностей и ковариаций, установленные как в GUM, так и в JCGM 101, требуют соответствующего обобщения. Суть такой модификации показана в GUM на ряде примеров [см. JCGM 100 (F.1.2.3)].