Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54500.1-2011; Страница 10

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба ГОСТ Р 54498-2011 Зерно и мука из мягкой пшеницы. Определение водопоглощения и реологических свойств теста с применением миксолаба Whole meal and flour from Triticum Aestivum. Determination of water absorption and rheological properties using a mixolab (Настоящий стандарт устанавливает метод определения водопоглощения и реологических свойств теста для муки из мягкой пшеницы и размолотого зерна мягкой пшеницы, имеющего крупность частиц, соответствующую требованиям настоящего стандарта) ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения ГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement (Настоящее Руководство устанавливает общие правила оценивания и выражения неопределенности измерения, которые следует соблюдать при измерениях разной точности и в разных областях - от технических измерений на производстве до фундаментальных научных исследований) ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло ГОСТ Р 54500.3.1-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 1. Propagation of distributions using a Monte Carlo method (В настоящем стандарте установлен численный метод, согласующийся с основными принципами GUM [Руководство ИСО/МЭК 98-3 (G.1.5)] и предназначенный для получения оценки неопределенности измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную величину, в которых входные величины характеризуются любыми заданными функциями распределения вероятностей [Руководство ИСО/МЭК 98-3])
Страница 10
10
  1. Основные понятия и принципы
    1. Основные понятия и принципы теории вероятностей, которые положены в основу концепции неопределенности измерения, изложенной в разделе 3, представлены в [4].
    2. Неопределенность измерения определяют как (JCGM200, словарная статья 2.26)«неотрица­тельный параметр, характеризующий рассеяние значений величины, приписываемых измеряемой величине на основании используемой информации».

Это определение согласуется с положениями, изложенными в 3.8, а также в 3.173.20.

    1. При вычислении неопределенности используются два представления распределения вероят­ностей [см. JCGM 101 (3.1), а также ИСО 3534-1, словарную статью 2.11] случайной величины X:
  • через функцию распределения [см. JCGM 101 (3.2), а также ИСО 3534-1, словарную статью 2.7], дающую для любого значения ее аргумента вероятность того, что Xменьше или равна этому значению;
  • через функцию плотности вероятностей [см. JCGM 100 (3.3), а также ИСО 3534-1, словарную статью 2.26], являющуюся производной от функции распределения.
    1. Информацию о каждой входной величине X в модели измерений, какправило, представляют в виде наилучшего значения оценки x и ассоциированной с ней стандартной неопределенностью u(x) (см. 3.18). Если для произвольных i и j X} и Xj связаны между собой (зависимы), то соответствующая информация должна быть отражена в виде меры тесноты этой связи, выражаемой через ковариацию (ИСО 3534-1, словарная статья 2.43) или корреляцию случайных величин. Если X и Xj не связаны между собой (независимы), то соответствующая ковариация будет равна нулю.
    2. Оценивание данных измерения в контексте модели измерений (1) или (2) это использова­ние имеющейся информации о входных величинахX1, ..., XN для получения ассоциированных с ними распределений вероятностей и последующего вывода распределения вероятностей, ассоциированно­го с выходной величиной Y. Последнее распределение, таким образом, можно рассматривать как результат оценивания данных измерения.
    3. Информация о входной величине Xj в модели измерений может быть получена из повторных показаний (оценивание неопределенности по типу А) [см. JCGM 100 (4.2), а также JCGM 200, словар­ную статью 2.28] или из обоснованных суждений на основе имеющихся данных о возможных значениях этой величины (оценивание неопределенности по типу B) [см. JCGM 100 (4.3), а также JCGM 200, сло­варную статью 2.29].
    4. При оценивании неопределенности по типу A (JCGM 200, словарная статья 2.28) часто делают предположение, что распределение, наилучшим образом соответствующее входной величинеXвусло- виях имеющихся повторных независимых показаний, это распределение Гаусса (ИСО 3534-1, словар­ная статья 2.50). В таком случае Xхарактеризуется математическим ожиданием, наилучшей оценкой которого является среднее арифметическое показаний, и стандартным отклонением, равным стандар­тному отклонению среднего арифметического. Если неопределенность оценивают по малому числу показаний (являющихся мгновенными реализациями величины, распределенной по нормальному зако­ну), то соответствующим распределением будет /-распределение (ИСО 3534-1, словарная статья 2.53). На рисунке 1 показаны плотности вероятности для распределения Гаусса (сплошная линия) и /-распре­деления с четырьмя степенями свободы (пунктирная линия). Сказанное выше не будет справедливо, если показания нельзя рассматривать как независимые.

При оценивании неопределенности по типу B (JCGM 200, словарная статья 2.29) часто един­ственной доступной информацией является то, чтоXлежит в определенном интервале [а, b]. Информа­ция такого вида может быть формализована в виде прямоугольного распределения вероятностей [см. JCGM 100 (4.3.7), а также ИСО 3534-1, словарную статью 2.60] с границами а и b (рисунок2). Если бы о рассматриваемой величине была доступна информация иного рода, то распределение вероятностей должно было быть согласовано с этой имеющейся информацией [26].