8
б) однородность показателей прецизионности для всех лабораторий и присутствие выбросов (аномальных результатов).
Технические приемы расчета результатов испытаний и примеры (расчет бромного числа) в обозначениях, указанных в приложении В, приведены в приложении Г.
Предполагают, что все результаты получены из одной нормально распределенной совокупности, либо существует возможность их преобразования в такую совокупность (4.1). Другие случаи требуют иной обработки, которая выходит за сферу действия этого стандарта [10].
Несмотря на то, что приведенные технические приемы представлены в форме, приспособленной для расчета вручную, рекомендуется использовать электронный компьютер для хранения и анализа результатов межлабораторных испытаний.
Измененная редакция. Изм. № 1.
4.1 Преобразование данных
4.1.1 Для многих методов испытаний наблюдается зависимость показателей прецизионности от уровня результатов испытаний, поэтому изменчивость сообщенных результатов различается при переходе от пробы к пробе. Такое положение исправляют с помощью преобразования данных.
Измененная редакция. Изм. № 1.
4.1.2 Рассчитывают лабораторные среднеквадратические отклонения Dj и среднеквадратические отклонения для дублей dj (приложение В) и строят графики зависимости их от средних значений по пробе mj. Если через точки, нанесенные на графике, можно провести две линии, параллельные оси значений m, тогда нет необходимости вводить преобразование.
Если через точки, нанесенные на графике, можно построить прямые непараллельные оси значений m или кривые, построенные по этим точкам, могут быть описаны зависимостями
D = f1(m) и d = f2(m),
то необходимо вводить преобразование.
4.1.3 Зависимости D = f1(m) и d = f2(m) в общем случае не будут идентичны. Однако статистические процедуры этого стандарта требуют, чтобы и для повторяемости (сходимости) и для воспроизводимости было применено одно и то же преобразование. Обе зависимости комбинируют в единую зависимость в форме D = f(m), включающей фиктивную переменную Т, причем D теперь включает и d. Эта процедура учитывает различие между двумя зависимостями, если оно существует, и обеспечивает возможность выявления этого различия.
В приложении Д приведены виды зависимостей и подходящие преобразования.
Единую зависимость D = f(m) оценивают с помощью метода взвешенного линейного регрессионного анализа (приложение Е). Следует использовать взвешенную регрессию с итерациями, однако в большинстве случаев даже простая регрессия будет давать удовлетворительную аппроксимацию. Вывод весовых функций изложен в Е.2, а расчетная процедура для регрессионного анализа - в Е.3. Типичные формы зависимости D = f(m) даны в Д.1. Все они выражены в терминах параметра единого преобразования В.
4.1.4 Оценивание В и следующая за этим процедура преобразования суммированы в Д.1. Это включает статистические испытания значимости регрессии (т.е. является ли зависимость D =f(m) параллельной оси значений т) и значимости различия между зависимостями для повторяемости (сходимости) и воспроизводимости. Решения по испытаниям принимают на основе 5 %-ного уровня значимости. Если обнаружено, что различие между зависимостями существует или отсутствует подходящее преобразование, следует использовать альтернативные методы [1]. В этом случае невозможно проводить испытание с целью выявления систематического смещения