ГОСТ Р 50779.26—2007
3 Термины, определения и обозначения
3.1 Тормины и определения
В настоящем стандарте применены термины по ГОСТ Р 50779.10, ГОСТ Р 50779.11 и
ГОСТРИСО 16269-8.
3.1.1
двусторонний доверительный интервал (two-sided confidence interval): Если mL2 иmu2 — две
функции наблюдаемых значений таких, что для оценки параметра распределения совокупности m
вероятность Pr(mL2 <.m s mu2) равна (1 — а)(где(1 — а) — константа положительная и меньше 1),
интервал междуmL2 и mu
2
~ это двусторонний доверительный интервал для m при доверительной
вероятности (1 — а).
[ГОСТ Р 50779.10, статья 2.57)
3.1.2
односторонний доверительный интервал (one-sided confidence interval): Если т ш (или mL1) —
функция наблюдаемых значений такая, что для оценки параметра распределения совокупности m
вероятность Pr (mUA i т) (или вероятность Рг (гии < т)) больше или равна (1— а) (где (1 —
а) — константа положительная и меньше 1). интервал от наименьшего возможного значения т до ти]
(или от mL, до наибольшего возможного значения т) — это односторонний интервал для т при
доверительной вероятности (1 — а).
[ГОСТ Р 50779.10, статья 2.58]
П р и м е ч а н и е — см. приложение В.
3.1.3
толерантные границы (tolerance limits): Две границы lL2 и /и2, относительно которых можно
утверждать, что по крайней мере заданная доля Р совокупности лежит между этими границами с
вероятностью (1 — а).
[ГОСТ Р 50779.11. статья 1.4.3)
П р и м е ч а н и е — Интервал от lL2 до ’02 называют толерантным интервалом.
3.1.4
допуск (tolerance): Разность между верхней и нижней толерантными границами.
[ГОСТ Р 50779.11, статья 1.4.4]
3.1.5
предикционный интервал (predication interval): Диапазон значений переменной, полученный по
случайной выборке из непрерывной совокупности, для которого можно утверждать с заданным уров
нем доверия, что не менее чем заданное количество значений в будущей случайной выборке из той же
самой совокупности попадает в этот интервал.
[ГОСТРИСО 16269-8, статья 3.1.1)
П р и м е ч а н и е — Более детальные определения вышеупомянутых понятий и их взаимосвязей приве
дены в приложении В.
2