ГО СТ Р 50779.28— 2007
Приложение А
(справочное)
Степенная модель. Общие сведения
Степенную модель часто используют для анализа надежности восстанавливаемых объектов. Она особенно
удобна для объектов, время ремонта которых незначительно и надежность которых остается неизменной после от
каза и последующего ремонта. Степенная модель такжеприменима для объектов, надежность которых может улуч
шаться. Степенная модель впервые исследована в (1J. Методы анализа повышения надежности, основанные на
степенной модели, приведены в ГОСТ Р 51901.16.
В (11— (3) сформулирована основная вероятностная модель, как негомогенный процесс Пуассона (Л!(г). Г> 0) с
математическим ожиданием
е1М(0] = >./"иг(Г) = >.рГ11-’.
Модель Пуассона дает вероятность того, что W(f) примет конкретное значение
/># у’
--
-----
Рг IW(f) = л) * 1—
Р
—
л -
-
*’*’
(л = 0. 1. 2. ...).
л!
Кроме того, для этой модели
e K l = y .0 - 1.2....).
где 1,— наработка до;-го отказа. Модель дает полезное приближение первого порядка для математическогоожида
ния наработки до /-го отказа
Е".НтПИ-
1
Если р ■ 1. то 2(1) * X и наработки между последовательными отказами подчиняются экспоненциальному
распределению со средним 1/). (гомогенный процесс Пуассона) с постоянным параметром потока отказов. Функция
2
(
) является убывающей при р < 1 (повышение надежности) и возрастающей прир> 1 (снижение надежности).
16