13
день). Такая систематическая погрешность не может быть скорректирована или устранена точной калибровкой. Ее абсолютную величину необходимо снижать путем использования четкой инструкции по выполнению измерений и совершенствования квалификации оператора. В этих условиях эффект смены операторов может рассматриваться как носящий случайный характер.
6.4.3 Влияющие эффекты, вызванные применением разного оборудования, обусловлены различиями в местах установки оборудования, особенно флуктуациями показаний и т.д. Некоторые из таких эффектов могут быть скорректированы точной калибровкой. Расхождения, обусловленные различиями систематического характера в оборудовании, также следует исправлять путем калибровки, и такого рода процедура должна быть предусмотрена в стандартном методе. Например, смена партий реактива может быть нивелирована также путем калибровки оборудования с использованием соответствующего стандартного образца, который должен выбираться в соответствии с рекомендациями Руководства ИСО 33* [2] и Руководства ИСО 35* [3]. Остаточную погрешность оборудования, которое было калибровано с применением стандартного образца, рассматривают как случайную.
6.4.4 Влияющие эффекты, обусловленные временем, могут быть вызваны различиями в условиях окружающей среды, такими как изменения комнатной температуры, влажности и т.д. Стандартизация условий окружающей среды сводит к минимуму влияние данных эффектов.
6.4.5 Влияние квалификации или усталости оператора может рассматриваться как взаимодействие факторов оператора и времени. Функционирование комплекта оборудования может быть различным в начале и после его использования в течение многих часов: это пример взаимодействия факторов оборудования и времени. Когда численность операторов невелика, а количество комплектов оборудования еще меньше, эффекты, являющиеся следствием данных факторов, могут быть оценены как фиксированные (не случайные).
6.4.6 Процедуры, представленные в ГОСТ Р ИСО 5725-2, разработаны с учетом допущения, что распределение лабораторных составляющих систематической погрешности является приближенно нормальным, но на практике они (процедуры) используют для большинства распределений других типов при условии, что данные распределения являются унимодальными. Дисперсия B носит название межлабораторной дисперсии и выражается в виде:
var(B) = σL2. (5)
Дисперсия будет также включать эффекты от изменений, обусловленных оператором, оборудованием, временем и окружающей средой. Дисперсии промежуточной прецизионности можно рассчитать на основе данных эксперимента вложенного типа по оценке прецизионности с использованием разных операторов, разного времени измерений, разных условий окружающей среды и т.д. При этом var(B) рассматривают как величину, состоящую из независимых составляющих, представляющих лабораторию, оператора, день эксперимента, условия окружающей среды и т.д.
* В России - согласно принятым методикам поверки (калибровки) средств измерений соответствующего типа.
Var(B) = Var(B0) + Var(B(1)) + Var(B(2)) + … (6)
Дисперсии обозначают следующим образом:
Var(B0) = σ(0)2;
Var(B(1)) = σ(1)2;
Var(B(2)) = σ(2)2 и т.д. (7)