ГОСТ Р 50779.27—2007
Библиография
|1]Mann. N.R.. Scheuer. Е.М. and Fertig. K.W. (1973). A New Goodness-of-fit test for the two-parameter Weibull or
Extreme Vaiue Distribution. Commun. Stat.. Vol. 2. pp. 383—400
12]Btom. G. (1958). Statistical Estimates and Transformed Beta-Variables. New York. J. Wiley &Sons
[3]Lawless. J.F. (1982). Statistical Models and Methods for Lifetime Data. New York. J. Wiley & Sons
[4]Shapiro. S.S. and Brain. C.W.. (1987). W-Test for the Weibull Distnbutlon. Commun. Statist. -Simula.. Vol. 16. No. 1.
pp. 209—219
[5]Mann. N. R.. Schafer. E. and Singpurwalla.N.(1974), Methods for StatisticalAnalysis of Reliability and Lifetime Data.
New York. J. Wiley & Sons
[6] Bain. L.J. and Engelhardt, M. (1981). Simple Approximate Distributional Results for Confidence and Tolerance Limits
for the Weibull Distribution Based on Maximum Likelihood Estimators. Technometrics. Vol. 23. No. 1. pp. 15—20
J7]Bain. L.J. and Engelhardt. M. (1986), Approximate Distributional Results Based on the Maximum Likelihood
Estimators for the Weibull Distribution. Journal of Quality Technology. Vol. 18. No. 3. pp. 174—181
(8] Lawless, J.F. (1978). Confidence Interval Estimation for the Weibull and Extreme Value Distributions. Technometrics.
Vol. 20. No. 4. pp. 355—368
(9] Meeker,W.Q. and Nelson.W.. (1976). Weibull Percentile Estimates and Confidence Limits from Singly Censored Data
by Maximum Likelihood, IEEE Trans, on Reliability. Vol. R-25. No. 1. pp. 20—24
(10] Gulda. M., (1985). On the Confidence Limits for Weibull Reliability and Quantiles: The Case of Maximum Likelihood
Estimation from Small Size Censored Samples. Reliability Engineering. Vol. 12. pp. 217—240
(11] Большее Л.Н., Смирнов H.B. Таблицы математической статистики. — М.: Наука. 1983
11