Продолжение табл. 3
Квантили нормального распределения
Up
У
p i
01234567
89
0,81
0,82
0,83
0,84
0,85
0,86
0,87
0,88
0,89
0,90
0,91
0,92
0,93
0,94
0,95
0,96
0,97
0,98
0,99
0,991
0,992
0,993
0,994
0,995
0,996
0,997
0,998
0,999
0,8779
0,9154
0,9542
0,994
1,036
1,080
1,126
1,175
1,227
1,282
1,341
1,405
1,476
1,555
1,645
1,751
1,881
2,054
2,326
2,366
2,409
2,457
2,512
2,576
2,652
2,748
2,878
3,090
0,8816
0,9192
0,9581
0,999
1,041
1,085
1,131
1,180
1,232
1,287
1,347
1,412
1,483
1,563
1,655
1,762
1,896
2,075
2,366
2,370
2,414
2,462
2,518
2,583
2,661
2,759
2,894
3,121
0,8853
0,9230
0,9621
1,003
1,045
1,089
1,136
1,185
1,237
1,293
1,353
1,419
1,491
1,572
1,665
1,774
1,911
2,097
2,409
2,374
2,418
2,468
2,524
2,590
2,669
2,770
2,911
3,156
0,8890
0,9269
0,9661
1,007
1,049
1,094
1,141
1,190
1,243
1,299
1,359
1,426
1,499
1,580
1,675
1,787
1,927
2,120
2,457
2,378
2,423
2,473
2,530
2,597
2,678
2,782
2,929
3,195
0,8927
0,9307
0,9701
1,011
1,054
1,098
1,146
1,195
1,248
1,305
1,366
1,433
1,506
1,589
1,685
1,799
1,943
2,144
2,512
2,382
2,428
2,478
2,536
2,605
2,687
2,794
2,948
3,239
0,8965
0,9346
0,9741
1,015
1,058
1,103
1,150
1,200
1,254
1,311
1,372
1,440
1,514
1,598
1,695
1,812
1,960
2,170
2,576
2,387
2,432
2,484
2,543
2,612
2,697
2,807
2,968
3,291
0,9002
0,9385
0,9782
1,019
1,063
1,108
1,155
1,206
1,259
1,317
1,379
1,447
1,522
1,607
1,706
1,825
1,977
2,197
2,652
2,391
2,437
2,489
2,549
2,620
2,708
2,820
2,989
3,353
0,9040
0,9424
0,9822
0,024
1,067
1,112
1,160
1,211
1,265
1,323
1,385
1,454
1,530
1,612
1,717
1,838
1,995
2,226
2,748
2,395
2,442
2,495
2,556
2,628
2,716
2,834
3,011
3,432
0,9078
0,9463
0,9863
1,028
1,071
1,117
1,165
1,216
1,270
1,329
1,392
1,461
1,538
1,626
1,728
1,852
2,014
2,257
2,878
2,400
2,447
2,501
2,562
2,636
2,727
1,848
3,036
3,540
0,9116
0,9502
0,9904
1,032
1,076
1,122
1,170
1,221
1,276
1,335
1,398
1,468
1,546
1,635
1,739
1,866
2,034
2,290
2,090
2,404
2,452
2,506
2,569
2,644
2,737
2,863
3,062
3,719
2
ваться выражением
^(1-я.)
----
Up
Например, для Pj=0,20, находим £/ol o= ^a-ot8o)= —£/o,8o“ —0,8416.
ГОСТ 25.503—80
С.
29