Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ IEC 62127-1-2015; Страница 60

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ 33733-2016 Нефть сырая. Определение содержания воды методом кулонометрического титрования по Карлу Фишеру Crude oil. Determination of water content coulometric Karl Fischer titration method (Настоящий стандарт устанавливает метод определения содержания воды в сырой нефти в диапазоне от 0,02 до 5,00 массовых или объемных процентов. Известно, что меркаптаны (RSH) и сульфиды (S или H2S) в пересчете на серу мешают проведению испытаний по настоящему методу, но при содержании менее 500 мкг/г (ppm) помехи от этих соединений незначительны (см. раздел 6)) ГОСТ 13047.21-2002 Никель. Кобальт. Методы определения марганца Nickel. Cobalt. Methods for determination of manganese (Настоящий стандарт устанавливает спектрофотометрический и атомно-абсорбционный методы определения марганца при массовой доле от 0,0003% до 0,30% в первичном никеле по ГОСТ 849, никелевом порошке по ГОСТ 9722 и кобальте по ГОСТ 123) ГОСТ ISO 16649-2-2015 Микробиология пищевой продукции и кормов. Горизонтальный метод подсчета бета-глюкуронидаза-положительных Escherichia сoli (кишечная палочка). Часть 2. Методика подсчета колоний при температуре 44 °С с применением 5-бром-4-хлор-3-индолил бета-D-глюкуронида Microbiology of food and animal feeding stuffs. Horizontal method for the enumeration of в-glucuronidase-positive Escherichia coli. Рart 2. Colony-count technique at 44 °C using 5-bromo-4-chloro-3-indolyl в-D-glucuronide (В настоящем стандарте приводится горизонтальный метод подсчета бета-глюкуронидаза-положительных Escherichia coli в продуктах, предназначенных для потребления человеком в пищу, или в продуктах, предназначенных для корма животных. В нем используется методика подсчета колоний при температуре 44 °С на плотной питательной среде, содержащей хромогенный компонент для обнаружения фермента бета-глюкуронидазы)
Страница 60
Страница 1 Untitled document
ГОСТ IEC 62127-12015
[28] Bacon D.R. Characteristics of a PVDF membrane hydrophone for use in the range 1 100 MHz.
IEEE Transactions
on Sonics and Ultrasonics.
January 1982. vof. SU-29. no. 1. p. 18—25
[29] Dereggi A S.. Roth S.G.. Kenney J.M.. Edelman S. and Harris G.R. Piezoelectric polymer probe for ultrasonic appli
cations.
J. Accost. Soc. Am..
1981. vol. 69. p. 853859
[30] Ueberle F. Shockwave Measurements Using an Optical Light Spot Hydrophone.
BMT Conference Proceedings.
Zurich. September 2006
[31] Granz B., Nanke R.. Fehre J.. Pfister T. and Engelbrecht R. Light Spot Hydrophone, Innovation in Lithotripsy.
Medical
Solutions.
June 2004. p. 8687
[32] Koch C. and Reibold R. Interferometric fiber-optic sensor for measurement of lithotripter shock waves.
Proceedings
in the 1995 World Congress on Ultrasonics.
1995. p. 931—934. ISBN 3-9805013-0-2
[33] Koch C. Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor.
Appl. Optics.
May
1999. vol. 38. iss. 13. p. 28122819
[34] Koch C., Molkenstruck W. and Reibold R. Shock-wave measurement using a calibrated interferometric fiber-tip sen
sor.
Ultrasound Med. Biol..
1997. vol. 23. iss. 8. p. 12591266
[35] Beard P.C. and T.N. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot
interferometer.
Appl. Optics.
February 1996. vol. 35. iss. 4. p. 663—675
[36] Koch C. Coated fiber-optic hydrophone for ultrasonic measurement.
Ultrasonics.
August 1996. vol. 34. iss. 6.
p. 687—689
[37] Coleman A.J., Draguioti E.. Tiptaf R.. Shotri N. and Saunders J.E. Acoustic performance and clinical use of a fibre-
optic hydrophone.
Ultrasound Med. Biol..
January 1998. vol. 24. iss. 1, p. 143— 151
[38] Uno Y. and Nakamura K. Pressure sensitivity of a fibre-optic microprobe for high frequency ultrasonic field.
Jpn. J.
Appl. Phys..
1999. vol. 38. p. 3129—3123
[39] Beard P.C., Perennes F. and Mills T.N. Transduction mechanisms of the Fabry-Perot polymer film sensing concept for
wideband ultrasound detection.
IEEE
Trans. Uftrason.
Ferroelectr. Freq. Conlr..
November 1999. vol. 46. iss. 6. p.
15751582
[40] Beard P.C.. Hurrell A.M. and Mills T.N. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to
20 MHz: A comparison with PVDF needle and membrane hydrophones.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
January 2000. vol. 47. iss. 1, p. 256264
[41] Wurster C.. Kohler M.. Pech R.. Eisenmenger W.. Suhr D.. Irmer U.. Brummer F. and Hulser D. Negative pressure
measurements of water using the glass fiber optic hydrophone.
Proceedings of the 1995 World Congress on Ultra
sonics.
1995. p. 635—698. ISBN 3-9805013-0-2
[42] Wang Z.Q.. Lauxmann P.. Wurster C.. Kohler M., Gompf B. and Eisenmenger W. Impulse response of fiber optic
probe hydrophone determined with shock waves in water.
J. Appl. Phys..
March 1999. vol. 85. iss. 5. p. 2514—2516
[43] Knjcker J.F.. Eisenberg A.. Krix M., Lotsch R.. Pessel M. and Trier H. Rigid piston approximation for computing the
transfer function and angular response of a fiber-optic hydrophone.
J. Acoust. Soc. Am..
2000. vd. 107. p. 19942003
[44] Weise W.. Wilkens V. and Koch C. Frequency response of fiber-optic multi-layer hydrophones: experimental in
vestigation and finite element simulation.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
July 2002. vol. 49. iss. 7. p.
937—945
[45] Wilkens V. and Koch C. Optical multilayer detection array for fast ultrasonic field mapping.
Opt. Lett.,
1999, vol. 24.
p. 10261028
[46] Beard P.C. Two-dimensional ultrasound receive array using an angle-tuned Fabry-Perot Polymer film sensor for
transducer field characterization and transmission ultrasound imaging.
IEEE Trans. Ultrason. Ferroelectr. Freq. Con tr..
2005. vol. 52. p. 10021012
[47] Wilkens V. Characterization of an optical multilayer hydrophone with constant frequency response in the range from
1 to 75 MHz. J. Acousf.
Soc. Am..
2003. vol. 113. p. 1431— 1438
[48] Beissner K. The influence of membrane reflections on ultrasonic power measurements.
Acustica.
1982. vol. 50.
p. 194—200
[49] Lewin P.A. and Schafer M.E. Ultrasonc probes in measurement practice.
Medical Device and Diagnostic Industry.
1986. vol. 8. no. 5. p. 40—45
[50] Beissner K. On the plane-wave approximation of acoustic intensity.
J. Acoust. Soc. Am..
1982. vol. 50. p. 194—200
[51] Kaye G.W.C. and Laby T.H.
Tables of Physical and Chemical Constants and Some Mathematical Functions.
14lh
edition. Longman Group Ltd.. 1973
[52] Koch C. Amplitude and phase calibration of hydrophones by heterodyne and time-gated time-delay spectrometry.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
March 2003. vol. 50. iss. 3. p. 344348
[53] Oran Brigham E.
The Fast Fourier Transform and its Applications.
Prentice Hall. 1988. ISBN 0-13-307547-8
[54] Preston R.C.. Bacon D.R. and Smith R.A. Calibration of medical ultrasonic equipment — procedures and accuracy
assessment.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
March 1988. vol. 35. iss. 2. p. 110— 121
56