ГОСТР ИСО 10801—2015
Библиография
11] ISO 9276-1 Representation of results of particle size analysis — Part 1: Graphical representation
(Гранулометрический анализ. Представление результатов. Часть 1. Графическое представление)
[2] ISO 9276-5 Representation of results of particle size analysis — Part 5: Methods of calculation relating to
particle size analyses using logarithmic normal probability distribution (Гранулометрический анализ.
Представление результатов. Часть 5. Методы расчета при гранулометрическом анализе с
использованием логарифмического нормального распределения вероятностей)
[3J ISO 10312 Ambient air — Determination of asbestos fibres — Direct transfer transmission electron microscopy
method (Воздух окружающий. Определение концентрации асбестовых волокон. Метод электронной
микроскопии с прямым просвечиванием)
|4] ISO 10808 Nanotechnologies — Characterization of nanopartides in inhalation exposure chambers for
inhalation toxicity testing (Нанотехнологии. Наноаэрозоли, применяемые для оценки токсичности при
ингаляционном поступлении в организм. Контроль характеристик)
[5} ISO.TR 12885 Nanotechnologies — Health and safety practices in occupational settings rele\’ant to
nanotechnologies (Нанотехнологии. Методы здравоохранения и безопасности в профессиональном
окружении в связи с нанотехнологиями)
[6] ISOTR 27628 Workplace atmospherics — Ultrafine, nanoparticle and nano-structured aerosols — Inhalation
exposure characterization and assessment (Атмосферы на рабочем месте. Очень мелкие аэрозоли,
аэрозоли с наночастицами и наноструктурой. Определение характеристик и оценка воздействия при
вдыхании)
{7j Aitken. R.J.. Creely. K.S. and Tran. C.L. Nanoparticles: An occupational hygiene review. Research report 274.
Health and Safety Executive (HSE), Norwich. UK (2004)
(8) Bakand. S., Winder. C.. Khahil. C. and Hayes. A. A novel in vitro technique for toxicity testing of selected
volatile organic compounds. J. Environ. Monit., 8. pp.100-105 (2006)
J9] Bakand. S.. Winder. C.. Khahil. C. and Hayes. A. An experimental in vitro model for dynamic direct exposure of
human cells to airborne contaminants. Toxicol. Letters. 165(1). pp. 1-10 (2006)
[10] Lestari. F.. Hayes. A.J., Green. A.R. and Markovic. B. In vitro cytotoxicity of selected chemicals produced
during fire combustion using human cell lines. Toxicol. In Vitro. 19. pp. 653-663 (2005)
[11] Goldberg. A.M. and Hartung, T. Protecting more than animals. Sci. Am.. 294. pp. 84-91 (2006)
[12] Hinds. W.C., Aerosol Technology. Wiley-lnterscience (1999).
[13] Jung. J.H.. Oh. H.C., Hoh. H.S.. Ji. J.H. and Kim. S.S. Metal nanopartide generation using a small ceramic
heater with a local heating area. Journal Aerosol Science. 37. pp. 1662-1670 (2006)
[14] Ji, J.H., Jung. J.H.. Yu, I.J. and Kim. S.S. Long-term stability characteristics of metal nanopartide generator
using a small ceranuc heater for inhalation toxidty studies. Inhalation Toxicology. 19. pp. 745-751 (2007)
[15] Ji. J.H.. Jung. J.H.. Kim. S.S.. Yoon. J.U.. Park. J.D.. Choi. B.S.. Chung. Y.H.. Kwon. I.H.. Jeong. J.. Han.
B.S., Shin. J.H., Sung. J.H., Song. K.S. and Yu. I.J. Twenty-eight-day inhalation toxidty study of silver
nanopartides in Sprague-Oawfey rats. Inhalation Toxicology. 19(10). pp. 857-871 (2007)
[16] Jung. J.H., Oh. H.C., Ji. J.H. and Kim. S.S. In-situ gold nanopartide generation using a small-sized ceramic
heater with a local heating area. Materials Science Forum. 544-545. pp. 1001-1004 (2007)
[17] Ji. J.H., Bae. G.N.. Yun, S.W.. Jung. J.H., Noh. H.S. and Kim. S.S. Evaluation of silver nanopartide generator
using a small ceramic heater for inadivation of S. epidermidis bioaerosols. Aerosol Sdence and Technology.
41(8). pp. 786-793 (2007)
[18] Kruis. F.E.. Fissan. H. and ReHinghaus. B. Sintering and evaporation characteristics of gas-phase synthesis
of size-selected PbS nanopartides. Materials Sdence and Engineering B. 69, pp. 329-334 (2000)
[19] Ku. B.K. and De la Mora. J.F. Relation between Electrical Mobility. Mass, and Size for Nanodrops 1-6.5 nm in
Diameter in Air. Aerosol Science and Technology. 43(3). pp. 241-249 (2009)
[20] Ku. B.K. and Maynard. A.D. Comparing aerosol surface-area measurement of monodisperse ultrafine silver
agglomerates using mobility analysis, transmission eledron microscopy and diffusion charging. J. Aerosol
Sd.. 36. pp. 1108-1124 (2005)
[21] Magnusson. M.H.. Deppert. K.. Malm. J.O., Bovin. J.O. and Samuelson. L. Gold nanopartides: production,
reshaping, and thermal charging. Journal of Nanopartide Research. 1. pp. 243-251 (1999)
[22] Peinekea. C., Attoui. M B. and Schmidt-Ott. A. Using a glowing wire generator for production of charged
uniformly sized nanopartides at high concentrations. Journal Aerosol Science, 37. pp. 1651-1661 (2006)
[23] Scheibel, H.G. and Porstendorfer, J. Generation of monodisperse Ag and NaCI aerosols with particle
diameters between 2 and 300 nm. Journal of Aerosol Science. 14. pp. 113-126 (1983)
[24] Schmidt-Ott. A. New approaches to in situ characterization of ultrafine agglomerates. Journal of Aerosol
Sdence. 19. pp. 553-563 (1988)
[25] Shimeda. M., Seto, T. and Okuyama. K. Size change of very fine silver agglomerates by sintering in a heated
flow. Journal of Chemical Engineering of Japan. 27. pp. 795-802 (1994)
[26] Sung, J.H.. Ji. J.H.. Yun. J.U.. Kim. D.S., Song. M.Y.. Jeong. J., Han. B.S.. Han. J.H.. Chung. Y.H.. Kim. J..
Kim. T.S., Change. H.K.. Lee. E.J.. Lee. J.H. and Yu. I.J. Lung function changes in Sprague-Dawfey rats after
prolonged inhalation exposure to silver nanopartides. Inhalation Toxicology. 20. pp. 567-574 (2008)
[27] Sung. J.H.. Ji. J.H.. Park. J.D.. Yoon. J.U.. Kim. D.S.. Jeon. K.S.. Song. M.Y.. Jeong. J.. Han. B.S.. Han. J.H..
Chung. Y.H.. Chang. H.K.. Lee, J.H.. Cho. M.H., Kelman, B.J. and Yu. I.J. Subchronic inhalation toxidty of
silver nanopartides. Toxicol. Sci.. 108(2). pp. 452-461 (2009)
20