22
7.3.4 Критерий Граббса
7.3.4.1 Проверка на один выброс
Для проверки, не является ли выбросом наибольшая величина из х расположенных в порядке возрастания совокупности данных xi (i = 1, 2, ..., р), вычисляют статистику Граббса Gp по формуле
, (9)
; (10)
. (11)
Для проверки значимости наименьшего результата наблюдения вычисляют тестовую статистику
.
a) В случае, если значение тестовой статистики меньше (или равно) 5 %-ного критического значения, тестируемую позицию признают корректной.
b) В случае, если значение тестовой статистики больше 5 %-ного критического значения и меньше (или равно) 1 %-ного критического значения, тестируемую позицию называют квазивыбросом и отмечают одной звездочкой.
c) В случае, если значение тестовой статистики больше 1 %-ного критического значения, тестируемую позицию называют статистическим выбросом и отмечают двумя звездочками.
7.3.4.2 Проверка на два выброса
Чтобы проверить, могут ли два наибольших результата наблюдений быть выбросами, вычисляют статистику Граббса
, (12)
; (13)
, (14)
. (15)
Соответственно, чтобы проверить два наименьших результата наблюдений, вычисляют статистику Граббса
, (16)
; (17)
. (18)