ГОСТ Р МЭК 62127-1— 2009
[30J Ueberle F. Shockwave Measurements Using an Optical Light Spot Hydrophone.
BMT Conference Proceedings,
Zurich. September 2006
[31] Granz B.. Nanke R.. Fehre J.. Pfister T. and Engelbrecht R. Light Spot Hydrophone. Innovation in Lithotripsy.
Medical Solutions.
June 2004, p. 86—87
[32] Koch C. and Reibold R. Interferometric fiber-optic sensor for measurement of lithotripter shock waves.
Proceedings in the 1995 World Congress on Ultrasonics.
1995. p. 931—934. ISBN 3-9805013-0-2
[33]Koch C. Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor.
Appl. Optics,
May 1999. vol. 38. iss. 13. p. 2812—2819
[34] Koch C. Molkenstruck W. and Reibold R. Shock-wave measurement using a calibrated interferometric fiber-tip
sensor.
UltrasoundtAed. Biol..
1997, vol. 23. iss. 8. p. 1259—1266
[35] Beard P.C. and Mills T.N. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse
Fabry-Perot interferometer.
Appl. Optics,
February 1996. vol. 35. iss. 4. p. 663—675
[36]Koch C. Coated fiber-optic hydrophone for ultrasonic measurement.
Ultrasonics.
August 1996. vol. 34. iss. 6.
p. 687—689
[37]Coleman A.J.. Draguioti E.. Tiptaf R.. Shotri N. and Saunders J.E. Acoustic performance and clinical use of a
fibreoptic hydrophone.
Ultrasound Med. Biol..
January 1998. vol. 24. iss. 1, p. 143— 151
[38] Uno
Y.
and Nakamura K. Pressure sensitivity of a fibre-optic microprobe for high frequency ultrasonic field.
Jpn.
J. Appl. Phys.,
1999. vol. 38. p. 3129—3123
[39] Beard PC.. Perennes F. and Mills T.N. Transduction mechanisms of the Fabry-Perot polymer film sensing
concept for wideband ultrasound detection.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
November 1999. vol.
46. iss. 6. p. 1575— 1582
[40] Beard P.C., Hurrell A.M. and Mills T.N. Characterization of a polymer film optical fiber hydrophone for use in the
range 1 to 20 MHz: A comparison with PVDF needle and membrane hydrophones.
IEEE Trans. Ultrason.
Ferroelectr. Freq. Contr.,
January 2000. vol. 47. iss. 1, p. 256—264
[41]Wurster C., Kohler M.. Pech R.. Eisenmenger W.. Suhr D.. Irmer U.. Brummer F. and Hulser D. Negative pressure
measurements of water using the glass fiber optic hydrophone.
Proceeding
s
of the 1995 World Congress on
Ultrasonics.
1995. p. 635—698. ISBN 3-9805013-0-2
[42] Wang Z.Q.. Lauxmann P. Wurster C.. Kohler M.. Gompf B. and Eisenmenger W. Impulse response of fiber optic
probe hydrophone determined with shock waves in water.
J. Appl. Phys.,
March 1999, vol. 85. iss. 5. p. 2514—2516
[43] Krucker J.F.. Eisenberg A.. Krix M.. Lotsch R.. Pessel M. and Trier H. Rigid piston approximation for computing the
transfer function and angular response of a fiber-optic hydrophone.
J. Acoust. Soc. Am..
2000, vol. 107. p.
1994—2003
[44]Weise W.. Wilkens V. and Koch C. Frequency response of fiber-optic multi-layer hydrophones: experimental
investigation and finite element simulation.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
July 2002, vol. 49. iss.
7. p. 937—945
[45] Wilkens V. and Koch C. Optical multilayer detection array for fast ultrasonic field mapping.
Opt. Lett..
1999.
vol. 24, p. 1026— 1028
[46] Beard PC. Two-dimensional ultrasound receive array using an angle-tuned Fabry-Perot Polymer fim sensor for
transducer field characterization and transmission ultrasound imaging.
IEEE Trans. Ultrason. Ferroelectr. Freq.
Contr.,
2005. vol. 52. p. 1002—1012
[47]Wilkens V. Characterization of an optical multilayer hydrophone with constant frequency response in the range
from 1 to 75 MHz.
J.
Acoust. Soc.
Am..
2003. vol. 113. p. 1431— 1438
[48]Beissner K. The influence of membrane reflections on ultrasonic power measurements.
Acustica,
1982. vol. 50.
p. 194—200
[49]Lewin PA. and Schafer M.E. Ultrasonc probes in measurement practice.
Medical DeviceandDiagnosticIndustry,
1986. vol. 8. no. 5. p. 40—45
[50] Beissner K. On the plane-wave approximation of acousbc intensity.
J.Acoust. Soc. Am..
1982. vol. 50, p. 194—200
[51] Kaye G.W.C. and Laby T.H.
Tables ofPhysical and Chemical Constants and Some Mathematical Functions.
14’-^ edition. Longman Group Ltd.. 1973
[52] Koch C. Amplitude and phase calibration of hydrophones by heterodyne and time-gated time-delay spectrometry.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
March 2003. vol. 50. iss. 3. p. 344—348
[53]Oran Brigham E.
The Fast Fourier Transform and its Applications.
Prentice Hall. 1988. ISBN 0-13-307547-8
[54]Preston R.C., Bacon D.R. and Smith R.A Calibration of medical ultrasonic equipment — procedures and accuracy
assessment.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
March 1988. vol. 35. iss. 2. p. 110—121
[55] Smith R.A. Are hydrophones of diameter 0.5 mm small enough to characterise diagnostic ultrasound equipment?
Phys. Med. Biol.
. 1989. vol. 34. p. 1593—1607
[56] Selfridge A. and Lewin PA. Wideband Spherically Focused PDVF Acoustic Sources for Calibration of
Ultrasound Hydrophone Probes.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
November 2000, vol. 47. iss. 6, p.
1372— 1376
[57] Radulescu E.G., Lewin PA.. Goldstein A and Nowicki A. Hydrophone spatial averaging corrections from 1—40 MHz.
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr..
November 2001, vol. 48. iss. 6. p. 1575— 1580
55