ГОСТ Р 70462.1—2022
Библиография
[1]ISO 26262:2018Road vehicles Functional safety
[2]Aeronautics, The Radio Technical Commission for. Software Considerations in Airborne Systems and Equipment
Certification. The Radio Technical Commission for Aeronautics. 2012
[3]ISO/IEC/IEEE 16085:2020
Systems and software engineering Life cycle processes Risk management
[4]ISO 14155:2011
Clinical investigation of medical devices for human subjects Good clinical practice
[5] Goodfellow I.J., Shlens J., Szegedy C. Explaining and harnessing adversarial examples. Astrophysics data system.
2014, arXiv:1412.6572
[6]Liang D., Hayes R, AlthofA. Deep Adversarial Robustness. 2017
[7]Yuan X., He P., Zhu O., Li X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Transactions
on Neural Networks and Learning Systems. 2019
[8]Fawcett T. An Introduction to ROC Analysis. Elsevier Science Inc., Pattern Recognition Letters, Vol. 27. 2006
[9] David M.W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation.
Journal of Machine Learning Technologies, Vol. 2. 2011
[10]Ting K.M. Encyclopedia of machine learning. Springer. 2011, ISBN 978-0-387-30164-8
[11] Brooks H., Brown B., Ebert B., Ferro C., Jolliffe I., Koh T.Y., Roebber R, Stephenson D. WWRP/WGNE Joint
Working Group on Forecast Verification Research. World Meteorological Organisation, Collaboration for Australian
Weather and Climate Research. 2017
[12]Brodersen K.H., Ong C.S., Stephan K.E., Buhmann J.M. The Balanced Accuracy and Its Posterior Distribution.
Istanbul: IEEE, 20th International Conference on Pattern Recognition. 2010, ISBN 978-1-4244-7541-4
[13]Tsoumakas G., Katakis I., Vlahavas I. Data Mining and Knowledge Discovery Handbook, in Mining Multi-label Data.
Springer, Boston, MA. 2009, ISBN 978-0-387-09822-7
[14] Matthews B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica
et Biophysica Acta (BBA) — Protein Structure, Vol. 405. 1975, ISSN 0005-2795
[15]Chicco D. Ten quick tips for machine learning in computational biology. BioData Mining, Vol. 10. 2017, PMCID:
PMC5721660
[16] Crammer K., Singer Y. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. JMLR,
Journal of Machine Learning Research, Vol. 2. 2001, ISSN 1532-4435
[17] Choi J.Y., Choi C.H. Sensitivity analysis of multilayer perceptron with differentiable activation functions.1, IEEE,
Transactions on Neural Networks, Vol. 3. 1992, ISSN 1045-9227
[18] Montano J.J., Palmer A. Numeric sensitivity analysis applied to feedforward neural networks. Springer, Neural
Computing & Applications, Vol. 12. 2003, ISSN 1433-3058
[19] Hess D.E., Roddy R.F., Faller W.E. Uncertainty Analysis Applied to Feedforward Neural Networks. Applied
Simulation Technologies, Vol. 54. 2007
[20]Katz G., Barrett C., Dill D., Julian K., Kochenderfer M. Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks. Springer, Computer Aided Verification. 2017
[21] Huang X., Kwiatkowska M., Wang S., Wu M. Safety Verification of Deep Neural Networks. Springer, ComputerAider
Vision. 2016
[22] Ehlers R. Formal verification of piece-wise linear feed-forward neural networks. Automated Technology for
Verification and Analysis. 2017
[23] Bunel R., Turkaslan I., Torr P, HS., KOHLI P., KUMAR M.P Piecewise linear neural network verification. 2017,
CoRR
23