ГОСТ Р 56748.1—2015
[23] Shaffer R.. & Rengasamy S. Respiratory Protection Against Airborne Nanoparticles: A Review. J. Nanopart. Res.
2009. 11 pp. 1661—1672
[24] Golanski L.. Guiot A.. Rouillon F., Pocachard J.. Tardif F. Experimental evaluation of personal protection devices
against graphite nanoaerosols: Fibrous filter media, masks, protective clothing, and gloves. Hum. Exp. Toxicol 2009, 28
pp. 353—359
[25] NANOSAFE dissemination report. Are conventional protective devices such as fibrous filter media, respirator
cartridges, protective clothing and gloves also efficient for nanoaerosols? Available at:
www.nanosafe.org/scripts.’
home/publigen/content/templates/show.asp?P=63&:L=EN&: ITEMID=13
[26] Department of Energy Nanoscale Science Research Centres. Nanoscale science research center: Approach to
Nanomaterial ES&H. Revision 2 — June 2007
[27]Packham C. Gloves as chemical protection — Can they really work? Ann. Occup. Hyg. 2006. 50 (6) pp. 545—548
[28]Health and Safety Executive. Risk Management of Carbon Nanotubes. 2006
[29] NIOSH.ApproachestoSafe Nanotechnology. Managing Health and SafetyConcerns with Engineered Nanopartides.
2009
[30] Paik S.Y.. Zalk D.M.. Swuste P. Application of a pilot control banding tool for risk level assessment and control of
nanoparticle exposure. Ann. Occup. Hyg. 2008. 52 (6) pp. 419—428
[31]ISO/DTS 12901-2 Nanotechnologies — Occupational risk management applied to engineered nanomaterials —
Part 2: Principles and approaches (Нанотехнологии. Менеджмент профессиональных ри
сков. связанных с разработанными наноматериалами. Часть 2. Принципы и подходы)
[32]US ЕРА US Code of Federal Regulations Title 40. Part 50 Appendix L. Reference method for the determination of
fine particulate matter as PM2.5 in the atmosphere. 1998
[33]EN 14907:2006Ambient airquality — Standard gravimetric measurement method for the determination of the
PM2.5 mass fraction of suspended particulate matter (Воздух окружающей среды. Каче
ство. Стандартный гравиметрический метод измерения для определения РМ2.5 весо
вой доли взвешенных частиц вещества)
[34] Brouwer D.H..Gijsbers J.H.,Lurvink M.W. Personal Exposure to Ultrafine Particles in the Workplace: Exploring Sam
pling Techniques and Strategies. Ann. Occup. Hyg. 2004. 48 (5) pp. 439—453
[35] Methner M., Hodson L.. Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and
measurement of potential inhalation exposure to engineered nanomaterials — Part A. J. Occup. Environ. Hyg.
2010. 7 (3) pp. 127—132
[36]OECD. 2009. No 11: Emmision Assessment for Identification of Sources and Release of Airborne Manufactured
Nanomaterials in the Workplace: Compilation of Existing Guidance. ENV/JM/MONO. 2009. 16
[37] Brouwer D.. van Duuren-Stuurman B.. Berges M„ Jankowska E.. Bard D.. Mark D. From workplace air measure
ment results toward estimates of exposure? Development of a strategy to assess exposure to manufactured na no-
objects. J. Nanopart. Res. 2009. 11 pp. 1867—1881
[38] Maynard A.D.. Aitken R.J. Assessing exposure to airborne nanomaterials: Current abilities and future requirements.
Nanotoxicology. 2007. 1 (1) pp. 26— 41 [Available at:
www.kiformahealthcare.com/doi/abs/10.1080/17435390701314720
and
www.mformahealthcare
.
com/doi/abs/10.1080/17435390701314720]
[39] Rasmussen P.E., Gardner H.D.. Niu J. Buoyancy-conected Gravimetric Analysis of Lightly Loaded Filters. J. Air
Waste Manag. Assoc. 2010. 60 (9) pp. 1065—1077
[40] Rasmussen P.E., Wheeler A.. Hassan N.. Filiatreault A.. Lanouette M. Monitoring personal, indoor, and outdoor
exposures to metals in airborne particulate matter: risk of contamination during sampling, handling and analysis.
Atmos. Environ. 2007. 41 pp. 5897—5907
[41] NIOSH. Current Intelligence Bulletin 60: Interim Guidance for Medical Screening and Hazard Surveillance for
Workers Potentially Exposed to Engineered Nanoparticles. Available at. 2009
www.cdc.gov/niosh/docs/2009-116/
[42]Department of Energy Nanoscale Science Research Centres. Nanoscale science research center: Approach to
Nanomaterial ES&H. Revision 2 — June 2007
33