16
- проверять гипотезы относительно влияния независимых переменных на отклик и использовать эту информацию для оценок изменений в отклике при заданном изменении независимой переменной;
- предсказывать значения переменной отклика при заданных значениях независимых переменных;
- предсказывать (с заданным уровнем доверия) интервал значений, в котором будет находиться ожидаемое значение отклика при заданном значении независимой переменной;
- оценивать направление и степень связи между переменной отклика и независимой переменной (хотя такая связь не означает причинную зависимость). Такая информация может использоваться для определения влияния изменения одного фактора (например, температуры) на выходные характеристики процесса, в то время как другие факторы остаются постоянными.
4.7.3. Достоинства
Регрессионный анализ может обеспечить понимание соотношений между различными факторами и наблюдаемым откликом. Такое понимание может помочь в принятии решений, связанных с изучаемым процессом, и будет способствовать улучшению процесса.
Регрессионный анализ позволяет в сжатом виде представлять данные отклика, сравнивать различные, но связанные наборы данных и анализировать потенциальные отношения «причина- следствие». Регрессионный анализ позволяет оценить относительные величины влияния независимых переменных, а также относительный вклад этих переменных. Эта информация очень важна при управлении или улучшении выходных характеристик процесса.
Регрессионный анализ обеспечивает определение оценки величины и источника влияний на отклик, вызванных факторами, которые или не измерены, или не исследовались при анализе. Эта информация может использоваться для совершенствования системы измерения или управления процессом.
Регрессионный анализ может использоваться для прогнозирования значений переменной отклика при заданных значениях одной или более независимых переменных, а также для прогнозирования влияния изменений независимых переменных на полученный или предсказанный отклик. При решении ряда задач проведение таких исследований может быть полезно для оценки эффективности предполагаемых действий.
4.7.4. Ограничения и предостережения
При моделировании процесса требуется навык в построении модели регрессии (линейной, показательной, многомерной) и использовании диагностики для улучшения модели. Наличие неучтенных переменных, погрешностей измерений и других источников необъясненных вариаций отклика может усложнить моделирование. Какой метод оценки является подходящим для регрессионного анализа, определяется предположениями, лежащими в основе рассматриваемой регрессионной модели, и характеристиками имеющихся данных.
Включение или невключение в анализ единичного наблюдения или их небольшой группы может оказать влияние на оценку отклика. Поэтому наблюдения, влияющие на результаты, должны быть освобождены от случайных выбросов, т.е. от экстремальных значений, пригодность которых для анализа должна быть исследована.
При моделировании является важным упрощение модели с помощью минимизации количества независимых переменных. Включение ненужных переменных может скрыть влияние независимых переменных и уменьшить точность прогнозов, сделанных с помощью модели. Однако, опустив существенную независимую переменную, можно серьезно ограничить модель и снизить достоверность результатов.
4.7.5. Примеры применений
Регрессионный анализ используют для моделирования таких характеристик производства, как объем производимой продукции, производительность, качество исполнения, временной