Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54579-2011; Страница 21

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54577-2011 Древесина модифицированная. Технические условия ГОСТ Р 54577-2011 Древесина модифицированная. Технические условия Modified wood. Specifications (Настоящий стандарт распространяется на заготовки из древесины модифицированной (ДМ), изготовленные термомеханическим, термохимическим, химико-механическим, гидротермическим способами, и устанавливает технические требования, методы контроля, правила приемки, маркировки, упаковки, транспортирования, хранения и гарантии изготовителя) ГОСТ Р 54583-2011 Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности информационных технологий. Часть 3. Анализ методов доверия ГОСТ Р 54583-2011 Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности информационных технологий. Часть 3. Анализ методов доверия Information technology. Security techniques. Aframework for IT security assurance. Part 3. Analysis of assurance methods (Настоящий стандарт позволяет пользователю согласовывать конкретные требования доверия и/или типичные ситуации с доверием с общими характеристиками имеющихся методов обеспечения доверия. Руководство, представленное в настоящем стандарте, применимо для разработки, внедрения и эксплуатации продуктов и систем информационных и коммуникационных технологий с требованиями безопасности) ГОСТ Р 54584-2011 Средства подводного освещения. Общие технические условия ГОСТ Р 54584-2011 Средства подводного освещения. Общие технические условия Means of underwater lighting. General specifications (Настоящий стандарт распространяется на электрические подводные световые приборы, применяемые для водолазных и подводно–технических работ. Настоящий стандарт предназначен для организаций и учреждений, осуществляющих проектирование, изготовление, установку, эксплуатацию, обслуживание, ремонт и закупку средств подводного освещения)
Страница 21
21

Приложение В (обязательное)

Метод качающейся частоты

B.1 Общие положения

Вообще говоря, для определения импульсной переходной характеристики стационарной линейной системы может быть использован сигнал возбуждения произвольного вида при условии, что он обладает достаточной энергией на всех интересующих частотах. Импульсная переходная характеристика может быть определена с помощью обратной свертки отклика помещения с сигналом возбуждения, или коэффициент передачи может быть получен как отношение спектра выходного сигнала испытуемой системы к спектру входного сигнала. Последнее предполагает преобразование Фурье входного и выходного сигнала для определения их отношения в частотной области.

Использование синусоидального сигнала качающейся частоты в качестве сигнала возбуждения имеет два преимущества по сравнению с методом, рассмотренным в приложении А. Данные преимущества заключаются в уменьшении чувствительности результата измерений к временным вариациям температуры и движения воздуха и в компенсации ухудшения отношения сигнал/шум из-за гармонических искажений. Поскольку все гармонические искажения могут быть исключены из результата измерений, сигнал возбуждения может иметь энергию, значи­тельно превышающую энергию сигнала ПМД. В тихих помещениях метод КЧ может обеспечить отношение сиг­нал/шум, превышающее 100 дБ.

Метод КЧ менее чувствителен к изменению во времени параметров испытуемой системы. Такие изменения возникают из-за перемещения воздуха при измерениях на местности. При измерениях импульсной переходной характеристики на больших расстояниях при ветре метод КЧ является единственно приемлемым.

Возбуждение методом КЧ может проводиться однократным сканированием от низких к высоким частотам или периодически повторяться. В настоящем приложении рассматривается случай однократного сканирования частоты. Для удобства весь частотный диапазон может быть разбит на поддиапазоны, т. е. измерения в каждой доле октавы могут выполняться отдельным сканированием.

Особенности использования периодической развертки частоты рассмотрены в В.8.

При однократном сканировании частоты для оценки коэффициента передачи используется вся энергия воз­буждения. Однократный сигнал возбуждения сокращает время измерения, хотя по окончании сканирования долж­на следовать пауза, чтобы зарегистрировать все запаздывающие составляющие акустического сигнала.

B.2 Длительность развертки

При однократном возбуждении длительность развертки частоты и ожидаемое время реверберации должны находиться в определенном соотношении в отличие от измерений с периодическим возбуждением. Можно приме­нять как совсем короткие, так и более продолжительные длительности развертки, многократно превышающие время реверберации. Однако продолжительность времени регистрации отклика на сигнал возбуждения должна превышать длительность сканирования, чтобы зарегистрировать уровень звукового давления до момента его спада до уровня фонового шума.

В акустике зданий и помещений реверберация на низких частотах обычно более продолжительна. Если при­меняют большие периоды развертки (несколько секунд), то конечная пауза должна быть согласована только с самыми высокими частотами и является обычно короткой. Данное требование обусловлено тем, что низкочастот­ные компоненты отклика поступают на микрофон в то время, когда частота сигнала возбуждения еще продолжает возрастать.

Увеличение периода однократного сканирования частоты увеличивает акустическую энергию в испытуе­мом помещении и, таким образом, увеличивает отношение сигнал/шум. В общем случае увеличение периода однократного сканирования более предпочтительно по сравнению с усреднением при периодическом возбужде­нии, т. к. это повышает устойчивость метода измерений к изменениям параметров во времени и способствует устранению искажений.

B.3 Генерация развертки

B.3.1 Общие положения

В соответствии с требованиями к спектральным характеристикам, установленными в 6.2.2, для рассматри­ваемых измерительных задач предпочтительно возбуждение с помощью сигнала, отличного от белого шума. Фор­ма спектра может быть изменена путем изменения как амплитуды сигнала, так и скорости развертки его частоты. В большинстве случаев желательно поддерживать амплитуду сигнала постоянной и изменять с определенной скоростью его частоту от нижней граничной частоты самой низкочастотной полосы диапазона измерений до верхней граничной частоты самой высокочастотной полосы. Сигнал возбуждения обычно формируют из синусои­дального сигнала с изменяемой частотой, дополняя его необходимой паузой.

При умеренном фоновом шуме обычно применяют развертку продолжительностью от двух до четырех самых продолжительных времен реверберации и паузы, равной наибольшему времени реверберации.