Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 29.12.2025 по 04.01.2026
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ Р 54204-2010; Страница 16

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ Р 54203-2010 Ресурсосбережение. Каменные и бурые угли. Наилучшие доступные технологии предотвращения выбросов образуемых в процессе разгрузки, хранения и транспортирования ГОСТ Р 54203-2010 Ресурсосбережение. Каменные и бурые угли. Наилучшие доступные технологии предотвращения выбросов образуемых в процессе разгрузки, хранения и транспортирования Resources saving. Stone and brown coals. Best available techniques in prevention of emissions unloading, storage and transportation (Настоящий стандарт устанавливает наилучшие доступные технологии в сфере предотвращения выбросов, образуемых в процессах разгрузки, хранения и транспортирования каменного и бурого угля. Настоящий стандарт распространяется на методы совершенствования технологий разгрузки, хранения и транспортирования каменного и бурого угля на промышленных предприятиях за счет применения соответствующих наилучших доступных технологий, позволяющих снизить негативное влияние на состояние окружающей среды на территории и вблизи этих предприятий. Настоящий стандарт не распространяется на технологии, связанные с биологическими, химическими и атомными предприятиями. Настоящий стандарт рекомендуется использовать во всех видах документации и литературы, относящихся к сферам обеспечения ресурсосбережения, энергоэффективности и экологической безопасности в процессах хозяйственной деятельности при сжигании твердого топлива на крупных промышленных предприятиях) ГОСТ Р 54205-2010 Ресурсосбережение. Обращение с отходами. Наилучшие доступные технологии повышения энергоэффективности при сжигании ГОСТ Р 54205-2010 Ресурсосбережение. Обращение с отходами. Наилучшие доступные технологии повышения энергоэффективности при сжигании Resources conservation. Waste treatment. Best available techniques for improving energy efficiency on incineration (Настоящий стандарт устанавливает наилучшие доступные технологии (НДТ) по энергоэффективному и экологически безопасному сжиганию отходов на промышленных предприятиях в соответствии с ограничениями. Область распространения настоящего стандарта - методы совершенствования технологий сжигания отходов, позволяющих снизить негативное влияние на состояние окружающей среды на территории и вблизи мусоросжигательных установок (МСУ). Настоящий стандарт распространяется только на процессы специализированного сжигания отходов и не охватывает все способы термической обработки отходов (например, технологии сжигания отходов совместно с другими видами топлива в цементных печах или на ТЭС установлены в других стандартах). Настоящий стандарт не распространяется на технологии, связанные со сжиганием биологических, химических и радиоактивных отходов. Настоящий стандарт рекомендуется использовать во всех видах документации и литературы, относящихся к сферам обеспечения ресурсосбережения, энергоэффективности и экологической безопасности в процессах хозяйственной деятельности при сжигании твердого топлива на крупных промышленных предприятиях) ГОСТ Р 54206-2010 Ресурсосбережение. Производство извести. Наилучшие доступные технологии повышения энергоэффективности ГОСТ Р 54206-2010 Ресурсосбережение. Производство извести. Наилучшие доступные технологии повышения энергоэффективности Resources saving. Production of lime. Best available techniques for improving energy efficiency (Настоящий стандарт содержит практические рекомендации по применению и использованию НДТ, приведенных в Справочнике ЕС по НДТ [3]. В настоящем стандарте приведены основные характеристики адаптированных к российским реалиям НДТ повышения энергоэффективности производства извести. Настоящий стандарт распространяется на проектирование новых предприятий по производству извести и реконструкцию (модернизацию) действующих, проведение процедуры оценки воздействия на окружающую среду и государственной экспертизы соответствующей документации)
Страница 16
16

использованием непосредственного водяного охлаждения.

Дороговизна высокоэффективных электростанций делает их неконкурентоспособными с эконо­мической точки зрения.

Увеличение параметров пара (сверхкритический пар) другое средство повышения эффектив­ности, если комбинированное производство тепловой и электрической энергии по каким-либо причи­нам невозможно.

Самой высокой энергоэффективности достигают при чрезвычайно высоких параметрах пара, используемых на установках, работающих в режиме базовой нагрузки.

Установки, работающие в режиме пиковых нагрузок с частыми циклами пуска, конструируют с более низкими параметрами пара, что приводит к более низкой энергоэффективности.

    1. Тепловая эффективность

Характер повышения тепловой эффективности зависит от вида производства, режимов нагрузки, систем охлаждения, используемых видов топлива, характера выбросов.

Комбинированное производство тепловой и электрической энергии рассматривают в качестве самого эффективного варианта сокращения общего количества выбросов СО2, что следует принимать во внимание при строительстве вновь спроектированной электростанции, если вырабатываемое ею и потребляемое количество энергии достаточно высоко, чтобы эффективно окупить затраты на стро­ительство более дорогого предприятия по комбинированному производству тепловой и электрической энергии вместо более простых предприятий по производству только тепловой или только электричес­кой энергии.

С современной точки зрения наилучшие доступные варианты это применение технологий и эксплуатационных мероприятий по повышению тепловой эффективности и сокращению образования парниковых газов, в частности выбросов CO2 при сжигании на различных предприятиях каменных и бурых углей для получения энергии.

Вторичные мероприятия по улавливанию и размещению CO2 также могут стать доступными в будущем, но в настоящее время их не рекомендуется рассматривать в качестве НДТ.

Предприятия по комбинированному производству тепловой и электрической энергии наибо­лее технически и экономически эффективные системы использования топлива и энергоснабжения. Комбинированное производство тепловой и электрической энергии рассматривают как самый лучший вариант применения НДТ в целях сокращения количества CO2, выброшенного в атмосферу, на единицу произведенной энергии.

Если в местных условиях спрос на тепловую энергию достаточно высок для окупаемости стро­ительства более дорогого предприятия по комбинированному производству тепловой и электрической энергии с учетом экономической целесообразности, вместо простой тепловой электростанции или энергоустановки целесообразно проектировать строительство предприятия для комбинированного производства тепловой и электрической энергии.

Поскольку спрос на тепло варьируется в течение года, предприятия по комбинированному произ­водству тепловой и электрической энергии должны гибко приспосабливаться к переходу на выработку электроэнергии из полученной тепловой энергии. Эти предприятия также должны обладать высокой эффективностью при эксплуатации с неполной нагрузкой. В этом контексте следует ориентироваться и на предприятия, эксплуатирующие конденсационные турбины с отводом пара, учитывая, что эффек­тивность предприятий, эксплуатирующих конденсационные турбины с отводом пара, средняя в ряду предприятий по комбинированному производству тепловой и электрической энергии и конденсацион­ных электростанций.

Для действующих предприятий, работающих на каменных и бурых углях, применимы многие тех­нологии повышения тепловой эффективности. При модернизации электростанции с заменой основно­го оборудования (кардинальной реконструкции с установкой новых котлов) могут быть достигнуты существенные положительные результаты.

В целом для повышения тепловой эффективности целесообразно:

  • уменьшать потери тепла, возникающие в результате образования несгоревших газов и элемен­тов в твердых отходах и остатках, образующихся при сжигании твердого топлива;
  • максимально повышать давление и температуру пара, а также применять повторное перегрева­ние пара для повышения КПД;
  • максимально понижать давление паровой турбины путем снижения температуры охлаждающей воды (охлаждение пресной водой);
  • минимизировать потери тепла для всех без исключения дымовых газов (использование оста­точного тепла или подача его в теплоцентрали);
  • минимизировать потери тепла через шлаки;

минимизировать потери тепла с помощью изоляционных материалов;