ГОСТ Р 56271-2014
[9] OWL 2 web ontology language direct semantics, [online] W3C Recommendation 27 October 2009.
Available from World Wide Web: <
http://www.w3.org/TR/owl2-direct-semantics/
>
[10] BAADER Franz. DL terminology. DL handbook, etc. Appendix 1, pages 495-505.
[11] BAADER Franz. CALVANESE Diego. McGUINNESS Deborah L„ NARDI Daniele and PATELSCHNEIDER
Peter F.. editors. The description logic handbook: theory, implementation, and applications. Cambridge
University Press. 2003.
[12] BE2EM M. Website for geometric/coherent logic. Available from World Wide Web: http:/Avww.ii.uib.
no/~bezem/GL
[13] BEZEM M.A. On the undecJdabiUty of coherent logic. In A. Middeldorp e.a., editors. Processes, terms
and cycles: steps on the road to infinity. LNCS 3838, pages 6-13. Springer-Verlag. Berlin. 2005.
[14] BEZEM M.A. and COQUAND T. Automating coherent logic. In G. Sutcli_e and A. Voronkov, editors.
Proceedings LPAR-12. LNCS 3835. pages 246-260. Springer-Verlag. Berlin, 2005.
[15] BLASS A. Topoi and computation. Bulletin of the EATCS 36:57-65.10-1998.
[16] BOVE. Ana and ARBILLA. Laura. A confluent calculus of macro expansion and evaluation. SIGPLAN lisp
pointers. V(1):278-287, 1992. Available from World Wide Web. http:/Avww.cse.chalmers.se/~bove/
Papers/papers.html
[17] GLENDINNING. Ian and VALEN-SENDSTAD. Magne. Characterization methodology for ISO/TS 15926-7
templates, [online]. In progress. 2008. Available from World Wide Web:
https://www.posccaesar.
org/browser/projects/IDS-ADI/Part7/Part7SpecificationsMethodologies/P7L_Characterization_
MethodologyJD S-120-001_lss_2x.doc
[18HE L.. CHAO Y. and ITOH H. R-SATCHMO refinements on l-SATCHMO. Journal of logic and computation
14(2):117-143. 2004.
[19] HORN A. Sentences which are true of direct unions of algebras. Journal of symbolic logic 16(1 );14—21.
1951.
[20] KOWALSKI R.A. Predicate logic as programming language. Procedings IFIP congress, pages 569-574,
1974.10.
[21] MANTHEY R. and BRY F. SATCHMO a theorem prover implemented in prolog. In E. Lusk and R.
Overbeek. editors, roceedings of the 9th conference on automated deduction, lecture notes in computer
science 310. pages 415-434. Springer. 1988.
[22] MAYR Richard and NIPKOW Tobias. Higher-order rewrite systems and their confluence. Theoretical
computer science, vol. 192. 3-29. 1998.
[23] NIPKOW T. Higher-order critical pairs. Proceeding of the 6th annual symposium on logic in computer
science, ed. G. Kahn. IEEE, pages 342-349, 1991.
[24] SKOLEM T. Logisch-kombinatorische Untersuchungen "uber die Erfullbarkeit und Beweisbarkeit
mathematischen Satze nebst einem Theoreme uber dichte Mengen.’ Videnskapsselskapets skrifter I.
Matematisk-naturvklenskabelig klasse. Videnskabsakademiet i Kristiania 4:1-36. 1920.
[25] SKOLEM T. Selected works in logic, edited by J.E. Fenstad. Universitetsforlaget. Oslo, 1970.
93