ГОСТ Р 56271-2014
ClassOfClassOfUsageOfRepresentation(x) — 9y(hasUser(x: у»
ClassOfCIassOfUsageOfRepresentation(x)Аhasllser(x; у)АhasUser(x; z) — у =z
ClassOfUsageOfRepresentation(x) лhasUser(x: у) — Possibtelndividual(y)
ClassOfUsageOfRepresentation(x) -» 9y(hasUser(x: y))
ClassOfUsageO(Representation{x) лhasUser(x: у)Ahasllser(x; z) -* у = z
UsageOfRepresentat»on(x)AhasUser(x; y) — Possiblelndividual(y)
UsageOfRepresentatk)n(x) -• 9y(hasUser(x; y))
UsageOfRepresentation(x)AhasUser(x; y)Ahasllser(x: z) —у = z
hasWhole(x; y) —>(ComposibonOflndividual{x))
CompositionOflndividual(x) AhasWhote(x; y) — Possiblelndividual(y)
CompositionOflndividual(x) — 9y(hasWho!e{x: y))
CompositionOflndividual(x)AhasWhole<x; y)AhasWhoie<x; z) -* у =z
hasWhyDeleted(x; y) —»(Thir»g(x))
Thing(x)AhasWhyDeleted(x; y) — ClassOflnformationRepresentation(y)
Thing(x)AhasWhyDeteted(x; y)AhasWhyDeleted(x; z) -♦ у =z
hasYear(x; y) —* (RepresentationOfGregorianDateAndUtcTime(x))
RepresentationOfGregorianDateAndUtcTime<x) AhasYear(x: y) — INTEGER(y)
RepresentationOfGregorianDateAndlltcTlme<x) —9y(hasYear(x: y))
RepresentationOfGregorianDateAndUtcTime(x) AhasYear(x; y) AhasYear<x; z) — у =z
B.7 Аксиомы дополнительного ограничения дипазона
ClassOfParticipation(x) ЛhasCIassOfPart(x: у) -> ParticipatingRoleAndDomain(y)
Namespace(x)AhasClassOfPart(x; y) —* ClassOflnformationRepresentation(y)
ClassOfArrangementOflndividual(x)AhasClassOfWhole(x; y) — ClassOfArrangedIndividual(y)
ClassOfParticipation(x) AhasClassOfWhote(x; y) -♦ ClassOfActivity(y)
Namespace(x)AhasClassOfWhole(x; y) —ClassOflnformationRepresentation(y)
LowerBoundOfNumberRange(x)лhasClassified(x: y) —AritbmeticNumber(y)
LowerBoundOfPropertyRange{x)AhasClassified(x; y) — Pfoperty(y)
UpperBoundOfNumberRange(x)лhasClassified(x: y) —AritbmeticNumber(y>
UpperBoundOfPropertyRange{x)AhasClassif»ed(x; y) — Property(y)
LcwerBoundOfNumberRange<x)лhasCIassi(ier(x; y) — NumbefRange(y)
LowerBoundOfPropertyRange(x)AhasClassifier(x: y) — PropertyRange(y)
UpperBoundOfNumberRange(x)лhasClassifier(x; y) — NumberRange(y)
UpperBoundOfPropertyRange(x)AhasClassifier(x: y) — PropertyRange(y)
ClassOfScaleConversion(x)AhasCodomain(x: y) -* Scale(y)
Scale(x)AhasCodomain(x: y) -♦ NumberSpace(y)
ClassOfScaleConversion(x) AhasDomain(x: y) — Scale(y)
Scale(x)AhasDomain(x; y) -* PropertySpace(y)
DiverenceOfSetOfClass(x)Ahaslnput(x; y)EnumeraledSetOfClass(y)
lntersec?ionOfSetOfClass{x) Ahaslnput(x: y) — EnumeratedSetOfClass(y)
PropertyOuantification(x)Ahaslnput(x; y) — Property(y)
UnionOfSetOfClass(x)Ahaslnput(x: y) -♦ EnumeratedSetOfClass(y)
TemporalBounding(x)AhasPart(x; y)-♦ Event(y)
ClassOfDefiratK)n(x)AhasRepresented(x; y) — Class(y)
Defmition(x) AhasRepresented(x; y) — Class(y)
DiverenceOfSetOfClass(x) AhasResult(x; y) -* Class(y)
IntersectionOfSetOfClass(x) AhasResult(x; y) —Class{y)
PropertyQuantification{x)AhasResult(x; y) —ArithmeticNumber(y)
UnionOfSelOfClass(x)AhasResult(x; y) -♦ Class(y>
BoundaryOJNumberSpace(x)AhasSubclass{x; y) — NumberSpace(y)
BoundaryOfPropertySpace(x)AhasSubclass(x: y) — PropertySpace(y)
SpeaalizationByDomain(x)лhasSubdass(x; y) -* RoteAndDomain{y)
SpecializationByRole(x) AhasSubc!ass(x; y) -» RoleAndDomain(y)
SpedalizationOflndividualDimensionFroniProperly(x) AhasSubclass(x; y) — IndividualDimension(y)
BoundaryOfNumberSpace(x) AhasSuperdass{x; y) — NumberSpace(y)
BoundaryOfPropertySpace(x) AhasSuperclass(x; y) — PropertySpace<y)
SpecializationByRole{x) AhasSuperclass(x: y) —»Role(y)
SpecializationOflndividualDimensionFromProperty(x) AhasSuperdass(x; y) — Property(y)
ArrangementOflndividual(x) AhasWho!e{x: y) —Arrangedlndividual(y)
Partidpation(x)AhasWhde(x: y) -» Activity(y)
67