Хорошие продукты и сервисы
Наш Поиск (введите запрос без опечаток)
Наш Поиск по гостам (введите запрос без опечаток)
Поиск
Поиск
Бизнес гороскоп на текущую неделю c 15.12.2025 по 21.12.2025
Открыть шифр замка из трёх цифр с ограничениями

ГОСТ 61094-2-2001; Страница 20

или поделиться

Ещё ГОСТы из 41757, используйте поиск в верху страницы ГОСТ 11881-76 ГСП. Регуляторы, работающие без использования постороннего источника энергии. Общие технические условия ГОСТ 11881-76 ГСП. Регуляторы, работающие без использования постороннего источника энергии. Общие технические условия Controllers acting without an independent energy source, SSI. General specifications (Настоящий стандарт распространяется на регуляторы Государственной системы промышленных приборов и средств автоматизации, работающие без использования постороннего источника энергии, предназначенные для регулирования давления, перепада давления, расхода, уровня, а также соотношения названных параметров изменением расхода или соотношения расходов жидких, газообразных сред и пара, изготавливаемые для нужд народного хозяйства и экспорта. . Стандарт не распространяется на регуляторы для дизельной автоматики и на регуляторы для холодильной техники и кондиционирования) ГОСТ 61094-3-2001 Государственная система обеспечения единства измерений. Микрофоны измерительные. Первичный метод градуировки по свободному полю лабораторных эталонных микрофонов методом взаимности. Настоящий стандарт представляет собой аутентичный текст международного стандарта МЭК 61094-3-95 «Микрофоны измерительные. Первичный метод градуировки по свободному полю лабораторных эталонных микрофонов методом взаимности» ГОСТ 16441-78 Кабели маслонаполненные на переменное напряжение 110-500 кВ. Технические условия ГОСТ 16441-78 Кабели маслонаполненные на переменное напряжение 110-500 кВ. Технические условия Oil-filled cables for alternating voltage 110-500 kV. Specifications (Настоящий стандарт распространяется на одножильные маслонаполненные кабели низкого и высокого давления с медной жилой, с изоляцией из пропитанной бумаги, в свинцовой или алюминиевой оболочке, предназначенные для передачи и распределения электрической энергии при номинальном междуфазном переменном напряжении до 500 кВ включительно частоты 50-60 Гц. Кабели предназначены для трехфазных систем с заземленной нейтралью с прямой связью кабельных линий с воздушными линиями электропередачи или без нее)
Страница 20
20

равны диаметру передней полости микрофона.

Необходимо отметить, что определяемый обоими методами объем включает в себя эквивалентный объем акустического импеданса мембраны (3.8.1 МЭК 61094-1).

Описанные выше методы могут быть использованы только на низких частотах, когда камеру связи рассматривают как простую гибкость. При использовании второго метода необходимо компенсировать разность в поправках на теплопроводность и на капиллярные трубки при изменении объема камеры связи и, может быть, рассмотреть влияние недостаточного отношения сигнала к шуму.

Д.3. Акустический импеданс микрофона

Акустический импеданс можно выразить в виде комплексного импеданса или в виде комплексного эквивалентного объема (3.8.1 МЭК 61094-1). Допускают, что микрофон можно представить в виде четырехполюсника с сосредоточенными параметрами, описываемого уравнением взаимности (1а). Такое представление будет достаточно точным для определения Za (5.4) до частоты, приблизительно равной 1,3 частоты собственного резонанса микрофона. Акустический импеданс можно определить косвенным методом, основанным на измерении электрической проводимости Y микрофона. При измерении электрической проводимости микрофон акустически нагружают на закрытый четвертьволновый отрезок трубы [р = 0 в уравнении (1а)], а акустический импеданс микрофона затем рассчитывают из уравнения

,        (Д.1)

где Zе,о - электрический импеданс при заторможенной мембране, определяемый из измерений, проведенных на достаточно высоких частотах (100-200 кГц), чтобы инерция мембраны эффективно препятствовала ее движению [q = 0 в уравнении (1а)].

Эквивалентными сосредоточенными параметрами, описывающими акустический импеданс микрофона, могут быть либо акустическая масса, акустическая гибкость и акустическое сопротивление, либо резонансная частота, эквивалентный объем для низких частот и декремент затухания мембраны. Сосредоточенные параметры можно определить из уравнения (Д.1). Резонансная частота определяется частотой, при которой мнимая часть Za равна нулю. При низких частотах Za определяется гибкостью и эквивалентным объемом. При резонансе реальная часть Za определяется акустическим сопротивлением и декрементом затухания. Акустическую массу рассчитывают по резонансной частоте и акустической гибкости.

Сосредоточенные параметры, представляющие акустический импеданс, можно также определить акустическими методами. При резонансе сдвиг фазы между звуковым давлением, действующим на мембрану, и напряжением холостого хода будет равен 90°. Эту частоту можно оценить при возбуждении мембраны с помощью электростатического возбудителя с одновременной ее нагрузкой на закрытый четвертьволновый отрезок трубы. При таких условиях декремент затухания можно определить как отношение чувствительности при резонансе к чувствительности на низкой частоте.

ПРИЛОЖЕНИЕ Е
(справочное)

Физические величины

Некоторые физические величины, описывающие свойства газа в замкнутых камерах связи, входят в уравнения для расчета чувствительностей микрофонов [уравнения (3), (4) и приложения А, Б].

Эти величины: с - скорость звука в газе; ρ - плотность газа; к - отношение удельных теплоемкостей газа; η - вязкость газа; αt - коэффициент температуропроводности газа, -