4
за равномерные.
4.3. Границы неисключенной систематической погрешности Θ результата измерения вычисляют путем построения композиции неисключенных систематических погрешностей средств измерений, метода и погрешностей, вызванных другими источниками. При равномерном распределении неисключенных систематических погрешностей эти границы (без учета знака) можно вычислить по формуле
,
где Θi- - граница i-й неисключенной систематической погрешности;
k - коэффициент, определяемый принятой доверительной вероятностью. Коэффициент k принимают равным 1,1 при доверительной вероятности Р = 0,95.
При доверительной вероятности Р = 0,99 коэффициент k принимают равным 1,4, если число суммируемых неисключенных систематических погрешностей более четырех (m > 4). Если же число суммируемых погрешностей равно четырем или менее четырех (m ≤ 4), то коэффициент k определяют по графику зависимости (см. чертеж).
График зависимости k =f (m, l)
k =f (m, l)
где m - число суммируемых погрешностей;
; кривая 1 - m = 2; кривая 2 - m = 3; кривая 3 - m = 4.
При трех или четырех слагаемых в качестве Θ1, принимают составляющую, по числовому значению наиболее отличающуюся от других, в качестве Θ2 следует принять ближайшую к Θ1 составляющую.
Доверительную вероятность для вычисления границ неисключенной систематической погрешности принимают той же, что при вычислении доверительных границ случайной погрешности результата измерения.
5. ГРАНИЦА ПОГРЕШНОСТИ РЕЗУЛЬТАТА ИЗМЕРЕНИЯ
5.1. В случае, если < 0,8, то неисключенными систематическими погрешностями по сравнению со случайными пренебрегают и принимают, что граница погрешности результата Δ = ε.
Если > 8, то случайной погрешностью по сравнению с систематическими