ГОС! Р ИСО 10303-203-2003
ENTITY quasi uniform surface
SUBTYPE OF <b_splTne_surfacc);
END_ENTITY; - - quasi_uniform_surface
ENTITY rational_b_spIinc_curvc
SUBTYPE OF (b_splinc_curvc);
wcights_data: LIST |2:?1 OF REAL:
DERIVE
weights: ARRAY |0:upper_index_pn_contn>l_paints| OF REAL :=■
list_to_array (weigh ts_data, 0,
upper_indcx_on_control_poinls);
WHERE
wrl: (SIZEOF (wcights_data) • SIZEOF(SELF\b_spline_curve.
control_points_list)>;
wr2: curve weights positive(SELF) ;
END_ENTITY; - - rational
b
spline_curvc
ENTITY rationalbsplinesurface
SUBTYPE OF (b_splinc_surfacc) :
wcights_data : LIST |2:?| OF LIST |2:?) OF REAL;
DERIVE
weights: ARRAY |l):u_upper| OF ARRAY |0:v_uppcr| OF REAL
makc_arrav_of_arra>’ (weights_data. 0. u upper, 0, v_upper) ;
WHERE
wrl: ((SIZEOF(wcights_data)SIZEOF(SELF\b_splinc_surfacc.
control_points_list)) AND (SlZEOF(weights_data|l|) = SIZEOF(
SELF\b_spline_surface.control_points_list 11J)>>;
wr2: surface_weights_positive(SELF) ;
END_ENTITY; - - rational_b_spline_surface
ENTITY rcctangular_compositc_surfacc
SUBTYPE OF (boundcd_surfacc) ;
segments : LIST |l:?| OF LIST |l:?| OF surfacc_patch:
DERIVE
n_u: INTEGER :» SIZEOFf segments!;
n_v: INTEGERSIZEOF( scgmcnts|l|);
WHERE
w rl:
(|
|
=
QUERY
(
s
<*
segm ents | (n_v
< > SIZEOF(s)) »;
wr2:
Constraints rcctangular com posite surfacc
(SELF) ;
END_ENTITY;
- - rcctangular_com posite_surface
ENTITY
rectangular _trimmed_surtace
SUBTYPE OF
(boundcd_surfacc) ;
: surface;
: paramctcr_valuc;
: paramclcr_valuc;
: parainctcr_valuc:
: paramctcr_valuc;
: BOOLEAN;
:BOOLEAN:
basis_surface
u I
u2
vl
v2
usense
vsensc
WHERE
w rl: (ul < > u2);
wr2: (vl < > v2);
wr3 : ((C C O N FIG _C O N T R O L _D E SIG N .E L E M E N T A R Y _SU R FA C E ’ IN TY PEO F (
basis_surfacc)) A N D (N O T (,C O N FIG _C O N T R O L _D E S IG N .PlJ\N E , IN
TY PEO F(basis surface»)) O R (
’C O N FIG _C O N T R O L _D E SIG N .SU R FA C E _O F_R E V O L U T IO N ’ IN TY PEO F <
basis_surface)) O R (usense ™ (u2 > u l))):
wi4: ((’C O N FIG _C O N T R O L _D E SIG N .SPH E R IC A L _SU R FA C E ’ IN TY PEO F(